
STD: Stable Triangle Descriptor for 3D place recognition

Chongjian Yuan12∗, Jiarong Lin1∗, Zuhao Zou1, Xiaoping Hong2, and Fu Zhang1,

Abstract— In this work, we present a novel global descriptor
termed stable triangle descriptor (STD) for 3D place recognition.
For a triangle, its shape is uniquely determined by the length of
the sides or included angles. Moreover, the shape of triangles is
completely invariant to rigid transformations. Based on this
property, we first design an algorithm to efficiently extract
local key points from the 3D point cloud and encode these
key points into triangular descriptors. Then, place recognition
is achieved by matching the side lengths (and some other
information) of the descriptors between point clouds. The point
correspondence obtained from the descriptor matching pair
can be further used in geometric verification, which greatly
improves the accuracy of place recognition. In our experiments,
we extensively compare our proposed system against other
state-of-the-art systems (i.e., M2DP, Scan Context) on public
datasets (i.e., KITTI, NCLT, and Complex-Urban) and our
self-collected dataset (with a non-repetitive scanning solid-state
LiDAR). All the quantitative results show that STD has stronger
adaptability and a great improvement in precision over its
counterparts. To share our findings and make contributions
to the community, we open source our code on our GitHub:
github.com/hku-mars/STD.

I. INTRODUCTION

Place recognition refers to the problem of detecting if two
measurements of the sensor (e.g., camera image, LiDAR
point cloud) are collected in the same scene. It is a fun-
damental problem in a variety of robotic applications, such
as loop detection in simultaneous localization and mapping
(SLAM)[1–3], global re-localization in prior maps [4, 5],
and maps merging in multi-robot systems [6]. Many vision-
based SLAM systems [7–11] have been proposed due to the
widespread use of cameras. However, these loop detection
methods are difficult to deal with the strong variation caused
by illumination, appearance, or viewpoint changes. On the
other hand, Light Detection and Ranging sensor (LiDAR)
is invariant to illumination and appearance change as it can
directly obtain the structural information of the environment.
The emergence of low-cost and high-performance LiDARs
has further increased the use of LiDAR in robotics [12–14].

Generally, an efficient LiDAR-based place recognition
solution should satisfy the following requirements. First, the
solution is required to achieve both rotation and translation
invariance regardless of the viewpoint changes. Second, the
solution should better provide a relative pose. A good initial

∗These two authors contribute equally to this work.
1C. Yuan, J. Lin, Z. Zou and F. Zhang are with the Department of

Mechanical Engineering, The University of Hong Kong, Hong Kong Special
Administrative Region, People’s Republic of China. {ycj1, zivlin,
zuhao.zou}@connect.hku.hk, fuzhang@hku.hk

2C. Yuan and X. Hong are with the School of System
Design and Intelligent Manufacturing, Southern University
of Science and Technology, Shenzhen, People’s Republic of
China.{yuancj2020,hongxp}@sustech.edu.cn

Fig. 1. (a) shows the stable triangle descriptor (STD) extracted from a
query point cloud. (b) shows the STD extracted from a historical point
cloud. In (c), an example of STD matching between these two frames of
the point cloud. The correctly matched STD descriptors are indicated by
white box, and the point clouds are registered by the poses provided by
the STD. These two frames of point clouds are collected by a small FOV
LiDAR (Livox Avia) moving in opposite directions, resulting in a low point
cloud overlap and drastic viewpoint change (See our accompanying video
on YouTube: youtu.be/O-9iXn1ME3g).

pose estimation allows the subsequent registration algorithm
to converge faster and more accurate. Third, the method
should be robust to different LiDAR point cloud densities
and environments since the sparsity of LiDAR point cloud
varies with distance, scene, and LiDAR types.

In order to achieve the above performance, in this pa-
per, we develop a new descriptor termed stable triangle
descriptor (STD), which encodes any three key points in the
scene by a triangle. Compared with polygons used in other
descriptors, the triangle is more stable because the shape
of the triangle is uniquely defined given the length of the
sides (or included angles). Compared with local descriptors
around key points, the shape of a triangle is completely
rotation and translation invariant. To extract key points for
triangle descriptors, we perform point cloud projection on
the plane and extract key points on the boundary, then form
the key points into triangles. Matches are made based on the
similarity of triangles. A typical place recognition case with
STD is shown in Fig. 1, which successfully recognizes two
point clouds collected at opposite view angles in the same
place. Specifically, our contributions are as follows:

• We design a triangle descriptor (see Fig. 3), a six-
dimension vector consisting of the length of three
triangle sides and the angles between the normal vectors
of the adjacent plane attached to each triangle vertex.

https://github.com/hku-mars/STD
https://www.youtube.com/watch?v=O-9iXn1ME3g


The descriptor is completely invariant to rotation and
translation while maintaining a high degree of distin-
guishability.

• We propose a fast key point extraction method based
on keyframes. In order to represent the structural infor-
mation of the scene, we project the point cloud at the
plane boundary and extract key points therein, which
will form triangle descriptors with adjacent key points.

• We evaluate our algorithm under multiple types of sce-
narios (urban, indoor, and unstructured environments)
and different LiDAR data (conventional spinning Li-
DARs and solid state LiDARs). Sufficient experimental
results verify the effectiveness of our method.

• To share our findings and make contributions to
the community, let our readers can quickly re-
produce our work in their follow-up research, we
make our codes publicly available on our GitHub:
github.com/hku-mars/STD1.

II. RELATED WORKS

Place recognition in 3D data is a key problem for robot
localization and has been addressed in different approaches.
According to the principle of the methods, we have divided
the existing work into the following three categories: (i)
local descriptor based on point features. (ii) global descriptor
based on appearance (iii) learning-based method.

Inspired by the place recognition solution in robotic vision,
Bastian[15] transforms a given 3D scan data into a range
image, then extracts point features from the range image and
performs score matching for 3D scan data based on point
features. Bosse and Zlot [16] extract key points directly on
3D data, then use the Gestalt Descriptor that encodes each
key point’s neighborhood and calculate the voting matrix for
place recognition. Apart from the Gestalt descriptors, some
other descriptors, such as PFH [17], SURFs [18], or SHOT
[19], are also used in a similar framework. However, these
local descriptors are sensitive to the density and noise of
the LiDAR point clouds and are not invariant to rotation or
translation of the viewpoint.

Global descriptors prefer to use the appearance informa-
tion of the point cloud. Magnusson et al. [20] first divide the
point cloud into overlapping grids, then compute the shape
properties of each cell by normal distribution transform,
and finally combines them into a matrix of surface shape
histograms. He et al. propose M2DP [21], which is generated
by projecting a 3D point cloud to multiple 2D planes and
generating a high dimensional compact global representation.
Giseop Kim and Ayoung Kim [22] propose scan Context,
a 2D descriptor based on the height of the surrounding
structures. V. Nardari et al. [23] propose a polygon descriptor
to achieve place recognition in the forest environment. In
short, these global descriptors make use of the appearance
information (surface flatness and orientation, height, and so
on) of the scene.

1All of the codes will be released as this paper is accepted

In contrast with the local descriptors, global descriptors
are more robust against noise and resolution changes, but
they still struggle with the change of viewpoints. Therefore,
some other works attempt to use deep learning for 3D place
recognition tasks. SegMap [24] achieves place recognition
by matching semantic features. OverlapNet [25] proposes
a deep neural network to achieve overlap calculation and
relative yaw angle estimates between pairs of 3D scans.
These learning-based approaches all require a training step
and use GPU acceleration.

Our proposed descriptor, stable triangle descriptor, is a
global descriptor consisting of three key points. The triangle
descriptors are extracted within a keyframe and describe
the relative distribution of key points in the frame. Com-
pared with other global descriptors [20–22], our descriptor
has stronger rotation and translation invariance. Compared
with the polygon descriptor [23], our descriptor is extracted
directly in 3D space, and uses the most recognizable and
invariable triangle among polygons, while [23] extracts poly-
gon descriptors in 2D space. In addition, our descriptor can
provide pose estimation with full degrees of freedom, which
can greatly reduce the registration time while ensuring the
registration accuracy.

III. METHODOLOGY

In this section, we describe how to extract the stable
triangle descriptor from a point cloud. Next, we introduce
how to build the descriptor dictionary and how to select
loop candidates. Finally, RANSAC-based loop detection and
geometric verification are proposed for a complete loop
detection pipeline. The overall pipeline of our method is
depicted in Fig. 2.

A. Stable Triangle Descriptor

Inspired by [24], to improve the stability of segmentation,
we perform loop detection on keyframes, which have points
accumulated from a few consecutive scans and hence have
increased point cloud density regardless of the specific
LiDAR scanning pattern. Specifically, we use a LiDAR
odometer [26] to register each new incoming point cloud into
the current keyframe. A new keyframe will be created when
the number of sub-frames accumulates to a certain number.
When given a keyframe of the point cloud, we first perform
plane detection by region growing. Specifically, we divide
the entire point cloud into voxels of given sizes (e.g., 1m).
Each voxel contains a group of points pi (i = 1, ..., N); we
then calculate the point covariance matrix Σ:

p̄ =
1

N

N∑
i=1

pi; Σ =
1

N
(pi − p̄)(pi − p̄)T ; (1)

Let λk denote the k-th largest eigenvalue of matrix Σ. The
plane criterion principle is:

λ3 < σ1 and λ2 > σ2 (2)

where σ1 and σ2 are pre-set hyperparameters. By this crite-
rion, we can check whether the points in a voxel form a plane
and if so, the voxel is called a plane voxel. Then, we initialize

https://github.com/hku-mars/STD


STD processing

 LiDAR odometry keyframe?

 Pre process

Yes

Workflow 
of our

Algorithm

 Plane boundary 
detection

Key points extraction

 Compute 
triangle 

descriptor

 Compute 
triangle 

descriptor

 Compute 
triangle 

descriptor

MatchingMatchingMatching

Hash 
table
Hash 
table
Hash 
table

Loop detection

RANSAC

Geometric 
verification

3D point cloud

Relative 
transformation

Relative 
transformation

Relative 
transformation

 Pre-process

Keyframe

The workflow of
 STD in loop closure

 Compute 
triangle 

descriptor

 Compute 
triangle 

descriptor

 Compute 
triangle 

descriptor

STD matching
and scoring

STD matching
and scoring

STD matching
and scoring

Hash 
table
Hash 
table
Hash 
table

Loop detection

Point cloud 
accumulation

Plane boundary 
detection

Key points extraction

Plane boundary 
detection

Key points extraction

RANSAC

Geometric 
verification

RANSAC

Geometric 
verification

Stable Triangle Descriptor (STD)

Output

Input
 LiDAR odometry and 

mapping (LOAM) Registered 
point cloud

Loop closure 
and corrections

Is loop
Detected?

Relative 
transformation Yes

End

No
Loop candidate search

STD extraction

Keyframe

The workflow of
STD in loop closure Loop detection

Point cloud 
accumulation

Plane boundary 
detection

Key points extraction
and combination

Plane boundary 
detection

Key points extraction
and combination

RANSAC

Geometric 
verification

RANSAC

Geometric 
verification

Stable Triangle Descriptor (STD)
Output

Input
 LiDAR odometry and 

mapping (LOAM)

Registered 
point cloud

Loop closure 
and correction

Is loop
detected?Relative 

transformation

Yes

No

End

STD

Search of loop candidate

Hash 
table
Hash 
table
Hash 
table

Calculation of 
hash key

Calculation of 
hash key

Calculation of 
hash key

STD matching
and scoring

STD matching
and scoring

STD matching
and scoring

Add

Query

STD extraction

Keyframe

The workflow of
STD in loop closure Loop detection

Point cloud 
accumulation

Plane boundary 
detection

Key points extraction
and combination

Plane boundary 
detection

Key points extraction
and combination

RANSAC

Geometric 
verification

RANSAC

Geometric 
verification

Stable Triangle Descriptor (STD)
Output

Input
 LiDAR odometry and 

mapping (LOAM)

Registered 
point cloud

Loop closure 
and correction

Is loop
detected?Relative 

transformation

Yes

No

End

STD

Search of loop candidate

Hash 
table
Hash 
table
Hash 
table

Calculation of 
hash key

Calculation of 
hash key

Calculation of 
hash key

STD matching
and scoring

STD matching
and scoring

STD matching
and scoring

Add

Query

Fig. 2. Workflow of our algorithm. Our method computes the triangle descriptors from keyframes. Then a
hash table is used to serve as the database of our descriptors for quick store and match. Frames with the top
10 descriptor matching scores will be selected as candidates. The loop candidate is regarded as a valid loop
once passing the geometric verification. The relative transformation between the loop frame and candidate
frame will also be obtained as the loop is triggered.

n2

n3
n1

l23

l13

l12

P1

P2

P3

Fig. 3. A standard triangle descriptor. Each
vertex p1,p2,p3 corresponds to a adjacent
plane. n1,n2,n3 are the normal vector to
the adjacent planes. Vertices are arranged
according to l12 ≤ l23 ≤ l13.

a plane with any plane voxel and grow the plane by searching
for its neighboring voxels. If the neighboring voxels are the
same planes (has the same plane normal direction with a
distance below a threshold), they are added to the plane
under growing. Otherwise, if the neighboring voxel is not
on the same plane, it is added to a list of boundary voxels
for the plane under growing. The above growing process
repeats until all the added neighboring voxels are expanded,
or boundary voxels are reached (see Fig. 4).

With the boundary voxels, we project their contained
points to the respective plane (see Fig. 5(a) and Fig. 5(b)).
For each plane, we create an image where the image plane
coincides with the plane and each pixel represents the
maximum distance of points contained in boundary voxels
of the plane. Then, we select a point, which has the largest
pixel value in its 5∗5 neighborhood, as a key point (see Fig.
5(c)). Each extracted key point corresponds to a 3D point in
the input point cloud and could be attached with the normal
of the plane it is extracted from.

Fig. 4. Plane expand process

Fig. 5. (a) Points in boundary voxels are colored in yellow. (b) The points
are projected onto the adjacent planes (blue points). (c) The plane image
where each pixel represents the maximum distance (in cm) of points in
boundary voxels to the plane. If a point has the maximum pixel value in its
5*5 neighborhood, it will be considered as the key points (red points).

With the extracted key points in a keyframe, we build a
k-D tree and search 20 near neighbor points for each point to
form the triangle descriptor. Redundant descriptors with the

same side length will be eliminated. Each triangle descriptor
contains three vertices, p1, p2 and p3, with projection
normal vectors n1, n2 and n3. Besides, the vertices of the
triangle are arranged according to the rule of side length in
ascending order (see Fig. 3). We summarize that a triangle
descriptor ∆ has the following contents:

• p1, p2, p3: three vertices,
• n1, n3, n3: three projection normal vectors,
• l12, l23, l13: three sides, and l12 ≤ l23 ≤ l13,
• q: the centriod of the triangle,
• k: the frame number corresponding to the descriptor.

In addition to descriptors, we will also save all n planes
Π = (π1,π2, . . . ,πn) extracted from this keyframe for the
following geometrical verification step.

B. Search of Loop Candidates

Since hundreds of descriptors can be extracted from a
keyframe, to quickly query and match descriptors, we use
a Hash table to store all descriptors. We use six attributes
with rotation and translation invariance in the descriptor to
compute the hash key, which are side lengths l12, l23, l13,
and the dot product of the normal projection vector n1 · n2,
n2 · n3, n1 · n3 respectively. Descriptors with all six similar
attributes will have the same hash key and hence be stored
in the same container. For a query keyframe, we extract all
its descriptors as detailed in Sec. III-A. For each descriptor
∆i, we calculate its hash key, locate it to the corresponding
container in the Hash table and vote once for the keyframes
that have a descriptor in this container. The matching process
finishes when all descriptor ∆i in the query keyframe are
processed. keyframes with the top 10 votes will be selected
as candidates with matched descriptors saved for the use of
the loop detection step.

Remark 1: Since boundary points are projected to the plane
extracted from the 3D point cloud instead of from the range
image, such as in [15], the extracted key point is invariant to
the view angle change. Moreover, the six descriptor attributes
are also invariant to any rigid transformation. Hence, the
overall method is rotation and translation invariance.

Remark 2: Thanks to the ordering of the triangle side
length and the stability of the triangle, two triangles are
assured to be the same if and only if the length of their



ordered sides are equal, without enumerating the side corre-
spondence.

C. Loop Detection

When given a loop candidate keyframe, we perform ge-
ometrical verification to eliminate the false detection due
to incorrect descriptor matching pairs. Since the shape of
the triangle is uniquely determined after the side length
is determined, once ∆a is matched to ∆b, their vertices
(pa1

,pa2
,pa3

) and (pb1 ,pb2 ,pb3) naturally match. Then
with this point correspondence, we can easily calculate
the relative transformation T = (R, t) between these two
keyframes through Singular Value Decomposition (SVD):

H =
∑3

i=1
(pai

− qa)(pbi − qb)

[U, S, V] = SVD(H)

R = VUT , t = −R ∗ qa + qb.

(3)

To increase the robustness, we use RANSAC[27] to find
the transformation that maximizes the number of correctly
matched descriptors.

Based on this transformation, we calculate the plane
overlap between the current frame and the candidate frame
for geometrical verification. Let a center point g and a
normal vector u represent a plane π in a voxel. De-
note the plane group of the current frame be BΠ =
[(Bg1,

Bu1), ...(Bgn,
Bun)]), the plane group of the candi-

date frame be CΠ = [(Cg1,
Cu1), ...(Cgm,

Cum)]), and the
rigid-body transformation be C

BT = (CBR,CBt) ∈ SE(3)),
where n is the number of planes in the current frame
and m is the number of planes in the candidate frame.
We construct a k-D tree (k = 3) with the center points
(Cg1,

Cg2, ...,
Cgm) from the CΠ. Then for each plane

center point Bgi (i = 1, 2, ..., n) ∈ BΠ. We first transform
Bgi by the transformation C

BT, then search a nearest point
Cgj in the k-D tree, and judge whether the two planes
coincide by the difference in normal vector and the point-to-
plane distance:

‖CBRBui − Cuj‖2 < σn
CuT

j (CBTBgi − Cgj) < σd,
(4)

where σn and σd are preset hyperparameters to determine
whether planes overlap or not. If a pair of planes satisfies the
normal vector and point-to-distance constraints in equation
(4), the pair of planes are coinciding. After checking all
planes of the current frame, we calculate the percent of plane
coincidence (Nc):

Nc =
Ncoincide

Nsum

× 100%, (5)

where Ncoincide is the number of coninciding planes and
Nsum is the number of all planes of the current frame. If the
Nc of the current frame and the candidate frame exceeds a
certain threshold σpc, we finally consider it to be a valid loop
detection. It is worth noting that geometric verification based
on planes is much more efficient than the ICP-based methods
since the number of planes is much less than the number of
point clouds. Besides, we can further optimize the normal

vector difference and point-to-plane distance in equation (4)
to obtain a more accurate transformation for loop correction,
which can be easily implemented using Ceres-Solver[28].
We defined this optimization process as STD-ICP and the
performance of STD-ICP will be verified in experiments.

IV. EXPERIMENTS

In this section, in order to verify the effectiveness, ro-
bustness and adaptability of our method, we evaluate our
algorithm in different scenarios (urban, indoor and unstruc-
tured environments) with different types of LiDAR (me-
chanical spinning LiDARs and solid state LiDARs). In each
experiment, we compare our method with state-of-the-art
counterparts. All experiments are carried out on the same
system with an Intel i7-11700k @ 3.6 GHz with 16 GB
memory.

A. Benchmark Evaluation

In this experiment, we evaluate our method on the open
urban dataset including KITTI odometry dataset [29], NCLT
dataset [30] and Complex Urban dataset [31]. All data were
collected in urban environments using mechanical spinning
LiDARs with different scanning lines. We compare our
method with two other global descriptors: Scan Context [22]
and M2DP [21]. We accumulate every 10 frames into a
keyframe for these datasets. If the ground truth pose distance
between the query keyframe and the matched keyframe is
less than 20m, the detection is considered a true positive.

For the implementation, we run our algorithm on all
datasets with the same parameters, where the voxel size is
1m, the plane judgement threshold σ1 and σ2 are 0.01 and
0.05, respectively, the normal different threshold σn is 0.2
and the point-to-plane distance threshold σd is 0.3m. For
Scan Context [22] and M2DP [21], we directly use the results
presented in the original paper [22].

1) Precision-Recall Evaluation:
We evaluate the performance of STD by the precision-

recall curve when vary plane coincide threshold σpc as shown
in Fig. 6. Since Scan Context-50 performs better than Scan
Context-10 in most scenarios, we only show the result from
Scan Context-50. From the results, STD outperforms Scan
Context and M2DP in almost all datasets. As stated in [22],
their method does not perform as well in narrow scenarios
where variation in vertical height is less significant. However,
our method is not limited to the height of the scene, and a
successful loop detection in such a scene is shown in Fig.
7 (a). Our method performs poorly only when the structure
or planes of the scene are particularly sparse because the
key points extracted in such scenes will be scarce. A typical
failure example is shown in Fig. 7 (b). Both cases are from
the NCLT dataset.

2) Run Time Evaluation:
We record the computation time on KITTI00 for all meth-

ods, as shown in Fig. 8. For M2DP [21], we test with their
open-sourced MATLAB code with the default parameter.
For Scan Context [22], we modified their MATLAB code
(add 8 Scan Context augmentations) to obtain the results



0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
KITTI00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
KITTI02

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
KITTI05

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
KITTI08

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
NCLT 2012-05-26

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
NCLT 2012-08-20

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
NCLT 2012-09-28

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
NCLT 2012-04-05

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Complex Urban00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Complex Urban01

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Complex Urban02

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Complex Urban04

Recall

Pr
ec

isi
on

M2DP Scan Context STD(proposed)

Fig. 6. Precision-Recall curves on KITTI, NCLT and Complex Urban datasets .

Fig. 7. A challenge case in narrow scenario and a failure case of STD.

in Sec. IV-A.1. Point cloud downsampling with a 0.5 m3

voxel grid is used for all methods. As shown in Fig. 8,
the time consumption per frame in Scan Context and M2DP
linearly increases with the number of frames in the library,
while our method does not have such a linear growing
trend. That is mainly due to our use of a Hash table as the
database to store descriptors, which avoids building a k-D
tree for historical descriptors like M2DP and Scan Context
do. Overall, the computation time of STD is similar with
M2DP, while it processing 10 times more points than M2DP.
Scan Context uses augmented descriptors, which increases
time consumption in both descriptor build and search loop.

3) Plane Coincidence Threshold Selection:
As can be seen from Fig. 6, Precision-Recall curves of

STD always decline from precision equal to 1, mainly due
to the selection of the plane coincide threshold σpc. When a
relatively large σpc is given, only the loop with large point
cloud overlap will be selected, which is 100% accurate in
the urban dataset we use. When the threshold decreases,
more loops with smaller overlap will be selected, introducing
possible false positives. We record the true and false positive
rates corresponding to different σpc of STD on Kitti08 in Fig.
9. It can be seen from the figure that 0.5 ∼ 0.6 is a good

trade-off value.
4) Localization Evaluation:
Some other descriptors [22, 25] can estimate the yaw

angle between the loop frame and the candidate frame
while performing loop detection. Our proposed descriptor
has further improved this function since we can provide
the relative transformation of all six degrees of freedom
between the loop frame and the candidate frame without
extra calculation. To verify this, we conduct the experiment
on the loop nodes of KITTI00. For each loop node, we set the
transform relative to matched frame a random initial value
uniformly drawn from a neighborhood (±5◦ in each axis of
rotation and ±5m in each axis of translation) of the ground
truth value. Fig. 10 shows the error and computation time
of GICP, STD and STD-ICP. STD-ICP can achieve similar
accuracy as GICP with less variance in both rotation and
translation. This is because STD provides a good initial value
for STD-ICP, while GICP is likely to have a local optimum
in loop nodes with less overlap. In addition, STD and STD-
ICP take much less time than GICP, only less than 1% of
GICP. This is because the number of planes (hundreds) is
very small compared to the size of the point cloud (more
than 100K).

B. Applicability to Other Types of LiDARs

In this experiment, to evaluate the adaptability and ap-
plicability of STD in different environments and using
different LiDARs, we conduct experiments with Livox se-
ries solid-state LiDARs in urban, unstructured and indoor
environments. For the urban environment, we choose the
KA Urban East dataset, which is collected by Livox Hori-
zon LiDAR and open-sourced in LiLi-OM [32]. For the



0 100 200 300 400
Key Frame Id

0

50

100

150

200

C
om

pu
ta

tio
n 

Ti
m

e 
(m

s) 0 1000 2000 3000 4000
Frame Id

STD(proposed)

M2DP
Scan Context

Build Descriptor Search Loop
0

50

100

150

C
om

pu
ta

tio
n 

Ti
m

e 
(m

s) M2DP
Scan Context
STD(proposed)

Fig. 8. Time Evaluation on KITTI00

0.20.40.60.8
Plane coincidence threshold

0

20

40

60

80

100

Pe
nc

en
ta

ge
 o

f s
ca

n 
(%

)

True positives
False positives

Fig. 9. The effect of the plane coincidence
threshold σpc on the true positive rate and
false positive rate on KITTI08.

 INIT  GICP   STD STD-ICP

10-2

10-1

100

101

R
ot

at
io

n 
Er

ro
r (

de
gr

ee
)

Init Rotation Error
GICP Rotation Error
STD Rotation Error
STD-ICP Rotation Error

 INIT  GICP   STD STD-ICP

10-2

10-1

100

101

Tr
an

sl
at

io
n 

Er
ro

r (
m

et
er

) Init Translation Error
GICP Translation Error
STD Translation Error
STD-ICP Translation Error

 GICP   STD STD-ICP

100

101

102

103

C
om

pu
ta

tio
n 

Ti
m

e 
(m

s)

GICP Time
STD Time
STD-ICP Time

Fig. 10. Pose error and computation time of GICP, STD and STD-ICP. Fig. 11. The fine point cloud map in park
and indoor environments. Loop nodes are
indicated by white boxes.

unstructured environment experiment, we collect two groups
of loop data inside a park filled with trees. For the indoor
environment, we collect the loop data in a multi-floor build-
ing. These two datasets are collected by Livox Avia LiDAR.
Since Scan Context [22] is not compatible with Livox solid-
state LiDARs, so we only compare STD with M2DP [21].
For the implementation, we use the default parameters of the
available codes for M2DP [21]. For STD, the voxel size used
in indoor is adjust to 0.5m while other parameters remain the
same as in Sec. IV-A.

For the ground truth calculation, we first use a LiDAR-
Inertial Odometry to get a rough map, then use loop detection
and pose graph [33, 34] to get a fine map, which is used as the
true value to select the ground truth loop nodes. Because the
number of the point cloud in a single frame of Livox LiDAR
is sparser than that of spinning LiDAR, we accumulate every
20 frames into a keyframe. Based on this, if the ground truth
pose distance between the query keyframe and the matched
keyframe is less than 20m for outdoor and 4m for indoor,
the detection is considered as a true positive. We show the
fine point cloud map and loop nodes for the park and indoor
environments in Fig. 11.

1) Result Analysis:
The Precision-Recall curves for STD and M2DP [21] are

plotted in Fig. 12. From the figure, we can see that M2DP
performs poorly on the Livox dataset, while STD achieves
similar performance as IV-A on the Livox dataset, except
indoor dataset. This is mainly because the corridors of each
floor of the building are very similar, resulting in relatively
low precision and recall. However, we can still provide a
certain number of valid loop nodes for loop correction so
that LiDAR loop closure can be applied to indoor mappings,
such as multi-floor parking lots, museums, etc.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Horizon Urban

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Avia Indoor

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Avia Park1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Avia Park2

Recall

Pr
ec

isi
on

M2DP STD(proposed)

Fig. 12. Precision-Recall curves on Livox LiDAR dataset.

V. CONCLUSION

This paper proposes a triangle-based global descriptor
STD. An efficient key point extraction algorithm based on
plane detection and boundary projection is proposed to
extract key points with geometrical features. These key
points form the triangle descriptors with their neighbors. This
combination greatly improves the rotation and translation
invariance of descriptors. Besides, the stability and unique-
ness of triangles make this descriptor naturally suitable for
similarity comparison in place recognition. To speed up the
querying and matching of the descriptor, we employ a Hash
table as the database to store all historical descriptors, which
avoids building a k-D tree in loop searching. Compared with
other global descriptors, STD not only performs better on
public datasets but also shows greater adaptability to different
environments and LiDAR types.

REFERENCES

[1] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar
odometry and mapping package for lidars of small fov,” in 2020 IEEE



International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 3126–3131.

[2] M. Labbé and F. Michaud, “Appearance-based loop closure detection
for online large-scale and long-term operation,” IEEE Transactions on
Robotics, vol. 29, no. 3, pp. 734–745, 2013.

[3] J. Lin and F. Zhang, “A fast, complete, point cloud based loop closure
for lidar odometry and mapping,” arXiv preprint arXiv:1909.11811,
2019.

[4] G. Kim, B. Park, and A. Kim, “1-day learning, 1-year localization:
Long-term lidar localization using scan context image,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1948–1955, 2019.

[5] B. Glocker, J. Shotton, A. Criminisi, and S. Izadi, “Real-time rgb-d
camera relocalization via randomized ferns for keyframe encoding,”
IEEE Transactions on Visualization and Computer Graphics, vol. 21,
no. 5, pp. 571–583, 2015.

[6] J. Lin, X. Liu, and F. Zhang, “A decentralized framework for simul-
taneous calibration, localization and mapping with multiple lidars,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 4870–4877.

[7] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[8] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[9] J. Lin, C. Zheng, W. Xu, and F. Zhang, “R2live: A robust, real-
time, lidar-inertial-visual tightly-coupled state estimator and mapping,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7469–7476,
2021.

[10] J. Lin and F. Zhang, “R3live: A robust, real-time, rgb-colored, lidar-
inertial-visual tightly-coupled state estimation and mapping package,”
in 2022 International Conference on Robotics and Automation (ICRA),
2022, pp. 10 672–10 678.

[11] Y. Zhu, C. Zheng, C. Yuan, X. Huang, and X. Hong, “Camvox: A
low-cost and accurate lidar-assisted visual slam system,” 2020.

[12] W. Yang, Z. Gong, B. Huang, and X. Hong, “Lidar with velocity: Cor-
recting moving objects point cloud distortion from oscillating scanning
lidars by fusion with camera,” IEEE Robotics and Automation Letters,
vol. 7, no. 3, pp. 8241–8248, 2022.

[13] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct
lidar-inertial odometry,” IEEE Transactions on Robotics, 2022.

[14] J. Lin and F. Zhang, “R3live++: A robust, real-time, radiance re-
construction package with a tightly-coupled lidar-inertial-visual state
estimator,” arXiv preprint arXiv:2209.03666, 2022.

[15] B. Steder, G. Grisetti, and W. Burgard, “Robust place recognition for
3d range data based on point features,” in 2010 IEEE International
Conference on Robotics and Automation, 2010, pp. 1400–1405.

[16] M. Bosse and R. Zlot, “Place recognition using keypoint voting in
large 3d lidar datasets,” in 2013 IEEE International Conference on
Robotics and Automation, 2013, pp. 2677–2684.

[17] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2008, pp.
3384–3391.

[18] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[19] S. Salti, F. Tombari, and L. Di Stefano, “Shot: Unique signatures of
histograms for surface and texture description,” Computer Vision and
Image Understanding, vol. 125, pp. 251–264, 2014.

[20] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilienthal,
“Automatic appearance-based loop detection from three-dimensional
laser data using the normal distributions transform,” Journal of Field
Robotics, vol. 26, no. 11-12, pp. 892–914, 2009.

[21] L. He, X. Wang, and H. Zhang, “M2dp: A novel 3d point cloud
descriptor and its application in loop closure detection,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 231–237.

[22] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor
for place recognition within 3d point cloud map,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 4802–4809.

[23] G. V. Nardari, A. Cohen, S. W. Chen, X. Liu, V. Arcot, R. A. F.
Romero, and V. Kumar, “Place recognition in forests with urquhart

tessellations,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 279–286, 2021.

[24] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
“Segmatch: Segment based place recognition in 3d point clouds,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 5266–5272.

[25] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss, “OverlapNet: Loop Closing for LiDAR-
based SLAM,” in Proceedings of Robotics: Science and Systems (RSS),
2020.

[26] C. Yuan, W. Xu, X. Liu, X. Hong, and F. Zhang, “Efficient and prob-
abilistic adaptive voxel mapping for accurate online lidar odometry,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8518–8525,
2022.

[27] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[28] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[29] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[30] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of Michigan North Campus long-term vision and lidar dataset,”
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2015.

[31] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” International Journal of Robotics Research, vol. 38, no. 6,
pp. 642–657, 2019.

[32] K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance
solid-state-lidar-inertial odometry and mapping,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5167–5174, 2021.

[33] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[34] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “isam2: Incremental smoothing and mapping using the
bayes tree,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 216–235, 2012.

http://ceres-solver.org
http://ceres-solver.org

	Introduction
	Related Works
	Methodology
	Stable Triangle Descriptor
	Search of Loop Candidates
	Loop Detection

	Experiments
	Benchmark Evaluation 
	Precision-Recall Evaluation
	Run Time Evaluation
	Plane Coincidence Threshold Selection
	Localization Evaluation

	Applicability to Other Types of LiDARs
	Result Analysis


	Conclusion
	References

