
Loam livox: A fast, robust, high-precision LiDAR odometry and
mapping package for LiDARs of small FoV

Jiarong Lin and Fu Zhang

Abstract— LiDAR odometry and mapping (LOAM) has been
playing an important role in autonomous vehicles, due to
its ability to simultaneously localize the robot’s pose and
build high-precision, high-resolution maps of the surrounding
environment. This enables autonomous navigation and safe path
planning of autonomous vehicles. In this paper, we present
a robust, real-time LOAM algorithm for LiDARs with small
FoV and irregular samplings. By taking effort on both front-
end and back-end, we address several fundamental challenges
arising from such LiDARs, and achieve better performance in
both precision and efficiency compared to existing baselines. To
share our findings and to make contributions to the community,
we open source our codes on Github1.

I. INTRODUCTION

With the ability to provide long range, highly accurate
3D measurements of the surrounding environment, light
detection and ranging (LiDARs) is becoming an essential
sensor in many robotic applications, such as autonomous
driving vehicles [1], drones [2, 3], surveying, and mapping
[4, 5]. To enable massive use in these areas, recent de-
velopments in LiDAR technologies have been focusing on
lowering the device cost while increasing its reliability [6].
In this trend, one class of LiDARs that gains increasingly
interests and developments are solid state LiDARs, which
come with various implementations, such as micro-electro-
mechanical-system (MEMS) scanning, optical phase array
(OPA), Risley prism, etc. Being massively produced 2, these
high performance and extremely low-cost LiDARs hold the
potential to promote or radically change the robotics industry.

Despite their superiority in cost, reliability, and possibly
performance against the conventional mechanical spinning
LiDARs, such as Velodyne Puck 3, solid state LiDARs
have many new features that bring significant challenges to
the LiDAR navigation and mapping. These features are (to
explain these features, we take the Livox MID40 LiDAR 2

as an example due to its wide availability):
Small FoV: solid state LiDARs usually have very small

field of view (FoV). For examples, Livox MID40 has a front
facing, conical shaped FoV spanning 38.4 degrees. Other
solid state LiDARs such MEMS LiDARs also suffer from
similar small FoV problem due to the large size of the
MEMS mirror preventing large steering angles. Comparing

J. Lin and F. Zhang are with the Department of Mechanical Engineer-
ing, Hong Kong University, Hong Kong SAR., China. {jiarong.lin,
fuzhang}@hku.hk

1https://github.com/hku-mars/loam_livox
2 https://www.livoxtech.com/mid-40-and-mid-100
3https://velodynelidar.com/vlp-16.html

Fig. 1: The 3D map of the Chong Yuet Ming Cultural Center in
the University of Hong Kong (HKU).

Fig. 2: The large scale mapping of the Hong Kong University of
Science and Technology (HKUST) main campus, the upper and
lower images are the bird-view and side-view, respectively. In above
images, the white path is the trajectory of the LiDAR, points are
colored by their heights. The accompanying video is available at
https://youtu.be/WHbbtU-Q9-k

to conventional spinning LiDAR (see Fig. 3), the reduced
FoV will lead to very fewer features in a frame, making the
subsequent feature matching prone to degenerate and easily
disturbed by moving objects. Although a larger FoV can
be obtained by combining multiple LiDARs, it considerably
increases the sensor cost and weight.

Irregular scanning pattern: existing spinning LiDARs
have multiple laser-receiver pairs stacking in a vertical row.
Rotating all pairs as a whole leads to a collection of parallel
rings. This regular scanning greatly simplifies the feature
extraction. For example, a corner is easily computed by
differentiating the depth of points on the line. In constrat,
the scanning pattern of solid state LiDARs is quite irregular.
For example, the Livox MID40 has a rosette-like scanning
pattern (see Fig. 4) where two neighboring scanning petals
are separated far apart.

Non-repetitive scanning: to maximize the coverage ratio

https://github.com/hku-mars/loam_livox
 https://www.livoxtech.com/mid-40-and-mid-100
https://velodynelidar.com/vlp-16.html
https://youtu.be/WHbbtU-Q9-k

-180° 180°0°

38.4° 30.0°

Comparison of FoV
(fish-eye view)

Livox Mid-40 Velodyne VLP-16

Fig. 3: FoV of Livox Mid-40 and Velodyne PUCK (VLP-16).

even when the LiDAR is static, non-repetitive scanning is
usually adopted [7] where the scanning trajectory never
repeats itself (see Fig. 4).

Motion blur: due to the continuous scanning of a single
laser head, the 3D points measured in one frame are really
sampled at different times as the LiDAR is continuously
moving. The in-frame motion will distort the point clouds
and cause motion blur although the motion blur also exists in
conventional mechanical spinning LiDARs (and essentially
all sequentially scanning LiDARs), it is usually less disas-
trous due to the simultaneous scanning of multiple lasers.

To address the problems mentioned above, we develop
a software package named “Loam Livox”, which addresses
many key issues including feature extraction and selection in
a very limited FoV, robust outliers rejection, moving objects
filtering and motion distortion compensation. Without other
sensors such as IMU, GPS, and cameras, our algorithm
calculates the LiDAR poses in real time (i.e. odometry) by
registering its point cloud to a specified range of local map.
Some of the results we obtained are shown in Fig. 1 and
Fig. 2, where we can tell the precision of the algorithm from
the level of details of the stairs and railing (Fig. 1), as well
as versatility for large-scale mapping (Fig. 2).

II. RELATED WORK

State estimation and map-building are the fundamental
prerequisites for intelligent robots. In the past recent years,
we have seen great efforts being made in the field of
simultaneous localization and mapping (SLAM), including
both vision-based and laser-based approaches. In this paper,
we mainly focus on the problem of laser-based SLAM.

Besl et al [8] first proposed the Iterative Closest Points
(ICP) method for scan matching, which builds the basic
operation for odometry. Building on this, Mendes et al
[9] proposed a pose-graph SLAM to correct the drift in
sequential scan matching, and demonstrated its effectiveness
in a high definition LiDARs, Velodyne HDL 64.

While the ICP algorithm performs well for 3D scans with
dense points, its effectiveness considerably degrades when
the points in a scan are sparse where the two scans do not
scan the same location on an object. To solve this problem,
Pulli et al [10] proposed a “point-to-plane” error metric. This
metric is used together with the “point-to-point” metric in [8]
and called the generalized ICP in [11]. Zhang et al [12] and
Shan et al [13] also used the “point-to-edge” metric in the
context of LiDAR odometry and mapping.

Besides the geometry features mentioned above, 3D key-
points based method [14]–[16] have also been proposed.
These methods required less computation resources, by ex-
tracting keypoints from dense point cloud with detector like
Point Feature Histograms (PFH) [14, 15], Viewpoint Feature

−0.40 −0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1 frame, time = 20 ms
−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fo
V

=
38

.4
∘

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

−0.40 −0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

2 frames, time = 40 ms
−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0
5
10
15
20
25
30
35
40

−0.40 −0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

3 frames, time = 60 ms
−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

10

20

30

40

50

60

Sa
m

pl
ei

ng
 ti

m
e

(m
s)

3D points projected on the plane of 1m distance in front

Fig. 4: The scanning trajectory of 3D points projected on the plane
of 1m distance in front, where the color encodes the sampling time.

Histograms (VFH) [16], etc. Considering the point cloud
characteristic of our scenarios and the demands of real-time
performance, we use point-to-edge and point-to-plane feature
in our work, inspired by the work of [12, 13].

To eliminate the effects of motion blur caused by LiDAR
movement, authors in [12] , [17] and [18] compensate the
movements in front-end processing by linear interpolating
the LiDAR pose. More recently, Gentil et al [19] formu-
lates an optimization problem in the back-end processing
to compensate the LiDAR movement. Compared to the
previous work, the back-end processing method achieves
better performance but cannot run in real-time.

While most of the previous work were based on spinning
LiDARs, in this work, we focus on the odometry and
mapping with solid-state LiDARs of small FOVs. Our con-
tributions are: (1) we develop a complete LOAM algorithm
for LiDARs with small FOVs. The algorithms is carefully
engineered and made open source to benefit the community;
(2) we further increase the accuracy and robustness of
the LOAM algorithm by considering the low-level physical
properties of LiDAR sensors in the front-end processing; (3)
we propose a picewise processing technique to overcome
the motion blur problem, and parallelize its implementation.
Experiments show that the piecewise processing outperforms
linear interpolation in terms of accuracy and running effi-
ciency.

III. POINTS SELECTION AND FEATURE EXTRACTION

The overview or our system is shown as Fig. 5, whose
front-end processing comprises of the point selection and
feature extraction. Considering the measuring mechanism
of a LiDAR sensor its low-level physical properties (e.g.,
laser spot size, signal noise ratio), we perform a point level
selection to extract the “good points”.

A. Points selection

We compute the following features of each 3D point p =
[x, y, z], where the X−Y −Z axis correspond to the Front-
Left-Up (FLU) of a LiDAR (see Fig. 6 (a)).

Depth D is the distance of the measured point to the
LiDAR sensor.

D(p) =
√
x2 + y2 + z2 (1)

The laser deflection angle Φ is the angle between X axis
and laser ray

Φ(p) = tan−1
(√

(y2 + z2)/x2
)

(2)

Maps update

Maps of edge and
planar features

Iteratively pose optimization

Factors of plane to plane
Planar features from maps

Planar features from lidar input

Factors of line to line

Edge features from lidar input

Edge features from maps

Retrieve features for matching

Output of odometry

Points selection and
feature extraction

Edge features

Planar features

Good points
for feature
extraction

Input from LiDAR

The overview of
our workflows

Fro
n

t-en
d

 p
ro

ced
u

res

B
a

ck-en
d

 p
ro

ced
u

res
Retrieve features

from maps
Select features
for matching

Build Kd-tree
of features

Fig. 5: The overview of our workflows. Each new frame is matched directly with the global map to provide the odometry output. The
matching result is in turn used to register the frame to the global map, leading to the same rate (i.e., 20 Hz) of odometry output and map
update. In our implementation, only the feature points (i.e., edge points and plane points) are saved in memory and all the raw points are
saved in hard disk for possible offline processing (e.g., offline global optimization).

a
b
c

de

f

X
Z

Y

pw

(b)

(c)

(a)

Φ

Fig. 6: (a) Illustration of incident angle θ, deflection angle Φ; (b)
residual of edge-to-edge; (c) residual of plane-to-plane.

The intensity I is I(p) = R/D(p)2, where R is the
object reflectivity, measured by the LiDAR sensor (some
LiDARs, e.g., Velodyne Puck, returns the intensity instead
of reflectivity. In this case, the intensity is directly available).
Small intensity I(p) means the point is either far from the
LiDAR sensor (large D(p)) or the object reflectivity R is
low.

The incident angle θ is the angle between the laser ray
and the local plane around the measured point (Fig. 6 (a)).

θ(pb) = cos−1

(
(pa − pc) · pb
|pa − pc| |pb|

)
(3)

To increase the localization and mapping accuracy, we
remove any of the following points:

1. Points nearing to the fringe of the FoV. (e.g., Φ(p) ≥
17◦ for Livox MID40). In such area, scanning trajectory
has large curvatures, leading to the feature extraction in
Section III.B less reliable.

2. Points with too large or too small intensity (e.g. I(p) ≤
7 × 10−3,or I(p) ≥ 1 × 10−1 for MID40). This is
because intensity directly indicates the strength of the
received laser signal. Too large intensity (signal) usually
leads to saturation or distortion in the receiving circuitry
and decreases the ranging accuracy. On the other hand,
too small intensity (signal) usually leads to lower signal
noise ratio, which also deteriorate the ranging accuracy.

3. Points with incident angles near to π or 0 (e.g. θ(p) ≤
5◦,or θ(p) ≥ 175◦ for MID40), like point pf in Fig. 6
(a). This is because the laser spot caused by the nonzero
divergence angle of the laser beam will be considerably
elongated. As a result, the measured range is the average
of the area covered by the large spot instead of a specific
point.

4. Points hidden behind an objects (e.g., pe in Fig. 6 (a)),
which will cause a false edge feature otherwise. A point
pe is a hidden point if:

|pe − pd| ≥ 0.1|pe|, and|pe| > |pd|

where pd is the nearest measurement point in scanning
order.

B. Feature extraction

After points selection, we perform feature extraction to
extract features from the “good points”. We extract plane
and edge features by computing the local smoothness of
the point candidate as in [12]. Furthermore, to mitigate the
matching degeneration due to the small number of features
caused by the limited FoV and the point selection, we employ
the LiDAR reflectivity as the 4-th dimensional measurement.
If the reflectivity of a 3D point is considerably different its
neighborhood points, we treat it as a point of edge feature
(edge in the reflectivity due to materials change, in contrast
to the edge in geometry due to shape change). Such points
are beneficial in some of the degeneration cases like facing
a wall with closed doors and windows.

IV. ITERATIVE POSE OPTIMIZATION

Due to the non-repetitive scanning mentioned in Section. I,
the extracted feature cannot be constantly matched between
two frames like in [12, 13, 19]. A simple example is that,
even when the LiDAR is static, the scanned trajectory (and
feature points) are different from the previous frame. In our
work, we use an iterative pose optimization procedure to

calculate the LiDAR pose. With the proper implementation
detailed later, we achieve real-time odometry and mapping,
both at 20Hz.

A. Residual of edge-to-edge

Denote Ek and Em the set of all edge features (see Sec-
tion. III-B) in the current frame and in the map, respectively.
For each point in Ek, we find 5 nearest points from Em (see
Fig. 6 (b)). To boost the searching speed, we build a KD-tree
of Em (see Fig. 5). Moreover, the KD-tree is built by another
parallel thread once the last registered frame/sub-frame is
received (see Fig. 7). This makes the KD-tree immediately
available when the new frame is received.

Let pl be a point in Ek of the current frame (k-th frame).
Noticing that the point pl in Ek is in the local LiDAR frame
while points of Em are registered in the global map, to find
the nearest points of pl in Em, we need to project it to the
global map by the following transformation.

pw = Rkpl + tk (4)

where (Rk, tk) is the LiDAR pose when the last point in
current frame is sampled, and needs to be determined by the
pose optimization. Here we use the LiDAR pose at the last
point in a frame to represent the pose of the whole frame,
and all points in that frame are projected to the global map
using this pose. Also notice that the last point in the current
frame is essentially the first point in the next frame.

Let pi denote the i-th nearest points of pw of Em. To make
sure that pi is indeed on a line, we compute the mean µ and
covariance matrix Σ formed by the m nearest points of pw.
We set m to 5 in our work. If the biggest of eigenvalue of
Σ is three times larger than the second biggest eigenvalue,
we assure that the nearest points of pw form a line on which
pw should lie. The correspond point-to-edge residual is then
computed as (Fig. 6 (b)) and then added to pose optimization.

rp2e (pw) =
|(pw − p5)× (pw − p1)|

|p5 − p1|
(5)

B. Residual of plane-to-plane

Similar to the edge feature points, for a point in the planar
feature set Pk of current frame, we find 5 nearest points in
the planar feature set Pm of the map (see Fig. 6(c)). We
also assure these 5 nearest points are indeed within the same
plane by computing their covariance matrix Σ. If the smallest
eigenvalue of Σ is three times less than the second smallest
eigenvalue, we compute the distance of the plane point in the
current frame to the plane formed by the 5 points in the same
plane, as follows, and add this residual to pose optimization.

rp2p (pw) =
(pw − p1)

T
((p3 − p5)× (p3 − p1))

|(p3 − p5)× (p3 − p1)|
(6)

C. In-frame motion compensation

As mentioned previously, the 3D points are sampled at
different time of different poses (i.e., motor blur) as the
LiDAR motion is continuously undergoing. To eliminate the
effect of motion blur, we propose two methods as follows:

Points cloud registration

[R|T]

Parallelism
paradiam

Retrive features for
matching

Subframe 1
Output of
odometry Front-end procedures Iterative pose optimization

Output of
odometry Front-end procedures Iterative pose optimizationSubframe 2

Output of
odometry Front-end procedures Iterative pose optimizationSubframe n

...

 Designed for
CPU with

multiple cores

Fig. 7: Our parallel paradigm for CPU with multiple cores. Each
sub-frame is matched with the global map independently on a
dedicated thread and the resulting pose is published with the sub-
frame timestamp as the odometry output. The matcheTd sub-frame
is then registered to the global map and become a part of the map.
Another dedicated thread receives the new registered sub-frame and
build a KD three of the updated map to be used in the next frame.

1) Piecewise processing: A simple yet effective way to
eliminate the effect of motion blur is piecewise processing.
We divide an incoming frame into three sequential sub-
frames. Then match these three sub-frames to the same map
accumulated so far independently. During the scan matching
of each sub-frame, all its points are projected to the global
map using the LiDAR pose at the end point of that sub-frame.
By doing so, the time interval of each sub-frame is 1/3 of the
original frame. Although this method seems very simple, it
works surprisingly well as shown in the results. Additionally,
this piecewise processing has the benefits of utilizing the
multi-core structure in modern CPUs by parallelizing the
matching of each sub-frame (see Fig. 7).

2) Linear interpolation: Another commonly used motion
compensation method is linear interpolation, as in [12]. De-
note (Rk, tk) the LiDAR pose at the last point of the current
frame and (Rk−1, tk−1) the previous frame, (Rk

k−1, t
k
k−1)

the relative rotation and translation between the previous and
the current frame, then:

Rk = Rk−1R
k
k−1, tk = Rk−1t

k
k−1 + tk−1

Assume tk−1 is the sampling time of the last point in the
previous frame. For any point sampled at time t in the current
frame, we have t ∈ [tk−1, tk]. Compute s = (t−tk−1)/(tk−
tk−1), then, the linearly interpolated pose at time t is:

Rt
k−1 = eω̂θs, ttk−1 = stkk−1

where θ is the magnitude and ω is the unit vector of of the
rotation axis of Rk

k−1, respectively. ω̂ is the skew symmetric
matrix of ω. From the Rodrigue’s formula, we have:

Rt
k−1 = I + ω̂ sin(sθ) + ω̂2(1− cos(sθ))

which implies that only sin(sθ) and cos(sθ) needs to be
computed for each point of the current frame, while the rests
remain constant. This saves some computations. With Rt

k−1,
the LiDAR pose at the current time is:

Rt = Rk−1R
t
k−1, tt = Rk−1t

t
k−1 + tk−1 (7)

Then we can project the point at time t to the global map
by the interpolated pose, as follows:

pw(t) = Rtpl + tt (8)

O
v
e
r
v
i
e
w

D
e
t
a
i
l
s

i
n

d
a
s
h

f
r
a
m
e

LiDARCamera

Laptop

(a) Without motion blur compensation (b) With linear interpolation (c) With piecewise processing (d) Sampling device and scene

Fig. 8: The comparison of different motion compensation methods. The first column shows the results without any motion compensation,
the second is with linear interpolation, and the third column is piecewise processing. The upper picture in the fourth column is our
hand-held device for data collection, the lower picture is the RGB image of the mapped area.

Algorithm 1: Iterative LiDAR pose optimization
Input : The edge set Ek and plane set Pk from the

current (sub-) frame; The edge set Em and
plane set Pm from maps; The LiDAR pose
of the previous frame (Rk−1, tk−1).

Output: The pose of the current frame (Rk, tk).
Start : Rk ← Rk−1, tk ← tk−1

for Iterative pose optimization is not converged do
for pl ∈ Ek do

Compute pw via (4) (or (8)).
Find 5 nearest points {p1∼5} of pw in Em.
if {p1−5} are indeed in a line then

Add point-to-edge residual re2e via (5).

for pl ∈ Pk do
Compute pw via (4) (or (8)).
Find 5 nearest points {p1∼5} of pw in Pm.
if {p1∼5} are indeed a plane then

Add point-to-plane residual rp2p via (6).

Perform pose optimization with 2 iterations.
Recompute re2e and rp2p, then remove 20% of
the biggest residual.

for a maximal number of iterations do
if the nonlinear optimization converges then

Break;

D. Outliers rejection, dynamic objects filtering

To avoid moving object in real environments bringing
down the accuracy of scan matching, we perform a dynamic
objects filtering as follows: in each iteration of the iterative
pose optimization, we refind the nearest neighbors of each
feature point and add the edge-to-edge residual (5) and
plane-to-plane residual (6) to the objective function, we first
perform pose optimization with a small number of iterations
(e.g., 2 used in our experiments). Using the optimization
results, we compute the two residuals in (5) and (6), and
remove the first 20% largest residuals. With the outliers
removed, a full pose optimization is finally performed. The

complete iterative pose optimization algorithm is summa-
rized in Algorithm. 1.

V. RESULTS

In this section, we evaluate our algorithm in three different
folds. In Section. V-A, we evaluate the result of mapping
by comparing the methods with different way of motion
compensations. In Section. V-B, we evaluate the accuracy
of position localization and rotation of our odometry by
comparing it with GPS and motion capture systems, respec-
tively. In Section. V-C, we evaluate the running performance
by comparing the time consumption with currently available
baseline.

A. Evaluation of mapping

The comparisons of the two motion compensation methods
of are shown in Fig. 8, where we can see that, without any
motion compensation (Fig. 8 (a)), the mapping is very blurry
in local areas (e.g., stairs, railing) and distorted in larger
scale (e.g., the building is curved). In contrast, with the
motion compensation, both of the linear interpolation and
piecewise processing effectively eliminate the motion blur,
and the stair steps and railing are distinguishable one from
another. However, the linear interpolation has a considerable
long-term drift, as seen by the curved building in the upper
figure of Fig. 8 (b). This is because the data are collected by
hand-held devices and the movement could be quite jerky and
cannot be accurately captured by simple linear interpolation.

B. Evaluation of odometry

We evaluate the localization of our algorithm by com-
paring with the measurement of GPS, shown in Fig. 9. We
compute the distance of two positions of our odometry and
then compare it with the measurement of GPS. The results
on two datasets are 0.41% and 0.65%, respectively, implying
that the localization is of high accuracy.

Furthermore, we evaluate the accuracy of rotation by
comparing our result with “OptiTrack”. The curves shown
in Fig. 10 demonstrate that the trajectories of our odometry
and motion capture system (mocap) are very close and the

GPS measurement:
022°20'15.54'' N
114°15'46.64'' E

GPS measurement:
022°20'05.59'' N
114°15'45.88'' E

GPS measurement:
022°17'05.56'' N
114°08'02.93'' E

GPS measurement:
022°17'05.56'' N
114°08'02.93'' E

Fig. 9: The localization accuracy on two datasets: outdoor (upper)
and indoor (lower). In each dataset, we compare our odometry
results with Google maps and compute the traveled distance.

30 35 40 45 50 55 60 65 70 75 80
Time/s

−70

−50

−30

−10

Eu
le

r a
ng

le
/∘

Comparison with mocap

mocap_roll
mocap_pitch
mocap_yaw
loam_roll
loam_pitch
loam_yaw

Fig. 10: The comparison between our results and motion capture
(mocap) system, the dashed line is measured by mocap, and the
solid line is the odometry output from our algorithm.

average error of Euler angles in all three directions is as low
as 1.1◦.

C. Evaluation of running performance

We evaluate the time consumption of our algorithm and
the current baseline 4 (both algorithm eliminates the motion
blur with piecewise processing and we replace the front-
end procedure of A-LOAM to make it applicable with Livox
MID40) on two platforms, the desktop PC (with i7-9700K)
and onboard-computer (DJI manifold25 with i7-8550U). As
shown in Table I, benefiting from the parallelization among
sub-frame registration, as well as between feature matching
and KD-tree building, our algorithms run 2∼3 times faster
than the baseline.

VI. CONCLUSION AND DISCUSSION

This paper presented an odometry and mapping algorithm
for LiDARs with small FOVs. The algorithm inherits the
basic structure and techniques (e.g., feature extraction, mat-
ing, motion compensation by linear interpolation) of standard
LOAM algorithm, but with several key new contributions,
such as point selection, iterative pose optimization, and
implementation parallelization. The developed algorithm has
its odometry and mapping both running in real time (i.e., 20
Hz). While achieving a high level of accuracy in mapping
and localization, the sequential scan matching is inherently
drifting. Reducing this drift by using techniques like loop
closure in concurrent work [20] and sliding window opti-
mization will be further researched in the future.

4https://github.com/HKUST-Aerial-Robotics/A-LOAM
5https://www.dji.com/cn/manifold-2

Desktop PC Desktop PC Onboard PC Onboard PC
@4.0∼4.8 Ghz parallel @3.0∼3.5 Ghz parallel

Ours 35.68 ms 17.24 ms 54.60 ms 32.54 ms
Baseline 109.00 ms NaN 125.13 ms NaN

TABLE I: The time consumption for each frame of our algorithm
and the baseline4, where “Desktop PC parallel” and “Onboard PC
parallel” use 3 threads for point cloud registration.

REFERENCES

[1] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, et al., “Towards fully au-
tonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2011, pp. 163–168.

[2] A. Bry, A. Bachrach, and N. Roy, “State estimation for aggressive
flight in gps-denied environments using onboard sensing,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 1–8.

[3] F. Gao, W. Wu, W. Gao, and S. Shen, “Flying on point clouds: Online
trajectory generation and autonomous navigation for quadrotors in
cluttered environments,” Journal of Field Robotics, vol. 36, no. 4,
pp. 710–733, 2019.

[4] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d
slam—3d mapping outdoor environments,” Journal of Field Robotics,
vol. 24, no. 8-9, pp. 699–722, 2007.

[5] B. Schwarz, “Lidar: Mapping the world in 3d,” Nature Photonics,
vol. 4, no. 7, p. 429, 2010.

[6] “Ces 2018: Waiting for the $100 lidar.” [Online]. Avail-
able: https://spectrum.ieee.org/cars-that-think/transportation/sensors/
ces-2018-how-a-new-generation-lidars-is-redefining-the-car

[7] “Point cloud characteristics of livox-lidar.” [Online]. Available:
https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/
downloads/Pointcloudcharacteristics.pdf

[8] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–606.

[9] E. Mendes, P. Koch, and S. Lacroix, “Icp-based pose-graph slam,” in
2016 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE, 2016, pp. 195–200.

[10] K. Pulli, “Multiview registration for large data sets,” in Second
International Conference on 3-D Digital Imaging and Modeling (Cat.
No. PR00062). IEEE, 1999, pp. 160–168.

[11] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[12] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, 2014, p. 9.

[13] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4758–4765.

[14] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Learning
informative point classes for the acquisition of object model maps,” in
2008 10th International Conference on Control, Automation, Robotics
and Vision. IEEE, 2008, pp. 643–650.

[15] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in 2009 IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 3212–3217.

[16] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 2155–2162.

[17] S. Hong, H. Ko, and J. Kim, “Vicp: Velocity updating iterative closest
point algorithm,” in 2010 IEEE International Conference on Robotics
and Automation. IEEE, 2010, pp. 1893–1898.

[18] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d
lidar-based online mapping,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–9.

[19] C. L. Gentil, T. Vidal-Calleja, and S. Huang, “In2laama: Iner-
tial lidar localisation autocalibration and mapping,” arXiv preprint
arXiv:1905.09517, 2019.

[20] J. Lin and F. Zhang, “A fast, complete, point cloud based loop closure
for lidar odometry and mapping,” arXiv preprint arXiv:1909.11811,
2019.

https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://www.dji.com/cn/manifold-2
https://spectrum.ieee.org/cars-that-think/transportation/sensors/ces-2018-how-a-new-generation-lidars-is-redefining-the-car
https://spectrum.ieee.org/cars-that-think/transportation/sensors/ces-2018-how-a-new-generation-lidars-is-redefining-the-car
https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/downloads/Point cloud characteristics.pdf
https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/downloads/Point cloud characteristics.pdf

	Introduction
	Related work
	Points selection and feature extraction
	Points selection
	Feature extraction

	Iterative pose optimization
	Residual of edge-to-edge
	Residual of plane-to-plane
	In-frame motion compensation
	Piecewise processing
	Linear interpolation

	Outliers rejection, dynamic objects filtering

	Results
	Evaluation of mapping
	Evaluation of odometry
	Evaluation of running performance

	Conclusion and discussion
	References

