Jiarong Lin 林家荣

Ph.D. degree in **Robotics** Sensor fusion; 3D reconstruction

www.jiaronglin.com

+852 5624 9033

zivlin@connect.hku.hk

Skills –

https://github.com/ziv-lin

Ziv-Lin-LJR

Github (All 7.8 K★) –

fast-lio2	★ 2063
r3live	★ 1764
loam_livox	★ 1369
r2live	★ 690
ImMesh	★ 475
STD	★ 423
Others works	★ 972

Education

2019 - 2023

- (Expected) Ph.D. in Robotics The University of Hong Kong (HKU) Hong Kong SAR, China Specialization: Robotics; LiDAR SLAM; Sensor fusion. Supervisor: Fu Zhang
- 2018 2019 Ph.D. student The Hong Kong University of Science and Technology (HKUST) Hong Kong SAR, China Specialization: Robotics; UAV control; Deep reinforcement learning
- 2011 2015 B.S. University of Electronic Science and Technology of China (UESTC) Cheng Du, China Specialization: Optical Information Science and Technology

Work Experience

- 2015-2018EmployeesDa Jiang Innovations (DJI)Computer vision engineer
 - **Phantom 4, Mavic, Inspire 2, and Spark**: In these projects, I am mainly responsible for the vision calibration modules, and have built a factory production line for automatic massive drone production.
 - Mavic Air, Spark, Tello, Mavic pro II: In these projects, I am responsible for gesture control and visual marker detection algorithms.

2014 Internship

Computer vision engineer

- **RoboMaster robotics competition**: Join as a member of the company's team. I developed the embedded control system of the
- shooting robots.
 DJI Guidance: In this project, I am responsible for the self-testing modules, and have developed a self-calibration program for online calibrating the stereo-camera automatically.

Research Experience

2019 - 2023 Ph.D. in Robotics MARS LAB

The University of Hong Kong (HKU)

Da Jiang Innovations (DJI)

- LiDAR slam: I worked on developing the localization and mapping algorithms based on LiDAR sensors, especially for those LiDARs (i.e. MEMS and solid-state LiDAR) with small FoV.
- LiDAR-Inertial-Visual sensors fusion: Worked on the research on sensor fusion, which tightly-coupled fuse LiDAR, IMU, and camera sensors to achieve the robust, real-time state estimation and mapping.
- 2018 2019 **Ph.D. Student** The Hong Kong University of Science and Technology (HKUST) <u>Robotics Institude</u>
 - Motion planning and control of UAV: I worked on developing the autonomous drones navigation systems, including the efficient motion planning and robust control of UAVs.
 - **Deep reinforcement learning for robotics**: I worked on deep learning for robotics, and have proposed a framework based on reinforcement learning to improve the performance of imitation learning for robotics.

Publications

I am the **first author** of **9** paper, including **2**×**T**-**RO**, **1**×**T**-**PAMI** (in revision), **1**×**RA-L** *journal*, and **3**×**ICRA**, **2**×**IROS** *conference paper*. For a detailed list of my publications, please go to the next page or **click here to my Google Scholar**.

Jiarong lin

The <u>University of Hong Kong</u> Verified email at hku.hk - <u>Homepage</u>

Robotics LiDAR SLAM Sensor fusion 3D reconstruction

		VEAD
TITLE	CITED BY	YEAR
Fast-lio2: Fast direct lidar-inertial odometry W Xu, Y Cai, D He, J Lin, F Zhang IEEE Transactions on Robotics 38 (4), 2053-2073	379	2022
Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV J Lin, F Zhang 2020 IEEE International Conference on Robotics and Automation (ICRA), 3126-3131	272	2020
R ³ LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package J Lin, F Zhang 2022 International Conference on Robotics and Automation (ICRA), 10672-10678	133	2022
R ² LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and Mapping J Lin, C Zheng, W Xu, F Zhang IEEE Robotics and Automation Letters 6 (4), 7469-7476	127	2021
A fast, complete, point cloud based loop closure for lidar odometry and mapping J Lin, F Zhang arXiv preprint arXiv:1909.11811	55	2019
A decentralized framework for simultaneous calibration, localization and mapping with multiple LiDARs J Lin, X Liu, F Zhang 2020 IEE/RSJ International Conference on Intelligent Robots and Systems	39	2020
Flying through a narrow gap using neural network: an end-to-end planning and control approach J Lin, L Wang, F Gao, S Shen, F Zhang 2010 JEEF/RS Linternational Conference on Intelligent Robots and Systems	34	2019
Full attitude control of an efficient quadrotor tail-sitter VTOL UAV with flexible modes W Xu, H Gu, Y Qing, J Lin, F Zhang 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 542-550	16	2019
R ³ LIVE++: A Robust, Real-time, Radiance reconstruction package with a tightly- coupled LiDAR-Inertial-Visual state Estimator J Lin, F Zhang arXiv preprint arXiv:2209.03666	15	2022
Std: Stable triangle descriptor for 3d place recognition C Yuan, J Lin, Z Zou, X Hong, F Zhang 2023 IEEE International Conference on Robotics and Automation (ICRA), 1897-1903	13	2023
MARSIM: A light-weight point-realistic simulator for LiDAR-based UAVs F Kong, X Liu, B Tang, J Lin, Y Ren, Y Cai, F Zhu, N Chen, F Zhang IEEE Robotics and Automation Letters 8 (5), 2954-2961	9	2023
Immesh: An immediate lidar localization and meshing framework J Lin, C Yuan, Y Cai, H Li, Y Ren, Y Zou, X Hong, F Zhang IEEE Transactions on Robotics	8	2023
Fast 3D Sparse Topological Skeleton Graph Generation for Mobile Robot Global Planning X Chen, B Zhou, J Lin, Y Zhang, F Zhang, S Shen 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems	5	2022
A screen-based method for automated camera intrinsic calibration on production lines W Gao, J Lin, F Zhang, S Shen 2019 IEEE 15th International Conference on Automation Science and	2	2019
Occupancy Grid Mapping Without Ray-Casting for High-Resolution LiDAR Sensors Y Cai, F Kong, Y Ren, F Zhu, J Lin, F Zhang IEEE Transactions on Robotics	1	2023
MARS-LVIG dataset: A multi-sensor aerial robots SLAM dataset for LiDAR-visual- inertial-GNSS fusion H Li, Y Zou, N Chen, J Lin, X Liu, W Xu, C Zheng, R Li, D He, F Kong, The International Journal of Robotics Research, 02783649241227968		2024
BTC: A Binary and Triangle Combined Descriptor for 3D Place Recognition C Yuan, J Lin, Z Liu, H Wei, X Hong, F Zhang IEEE Transactions on Robotics		2024

FOLLOW

GET MY OWN PROFILE

Cited by		
	All	Since 2019
Citations h-index i10-index	1108 10 10	1107 10 10
		600
		450
	- 1	300
	- H	150
	2020 2021 2022 20	23 2024 0

Co-authors

8	Fu Zhang Assistant Professor of Mechanic	>
	Yixi Cai Ph.D. Candidate, Mechatronics a	>
1	Wei XU PhD, University of Hong Kong	>
	Xiyuan Liu The University of Hong Kong	>
	Shaojie Shen Associate Professor, Hong Kong …	>
1	Xiaoping Hong SUSTech	>
1	Chongjian Yuan 香港大学	>
	Fei Gao Associate Professor, Zhejiang U…	>

Articles 1–17 V SHOW MORE

Repositories 37

☆ Stars 162

Jiarong.Lin

ziv-lin

Follow

www.jiaronglin.com

A 689 followers \cdot 101 following

HKU, MaRS LAB

2 www.jiaronglin.com

Achievements

Pinned

☐ r3live

A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package

🛑 C++ 🟠 1.8k 😽 390

FAST_LIO

A computationally efficient and robust LiDARinertial odometry (LIO) package

🛑 C++ 🛛 🛣 2.1k 🛛 😽 718

Ioam_livox

A robust LiDAR Odometry and Mapping (LOAM) package for Livox-LiDAR

● C++ 🏠 1.4k 💡 430

📙 ImMesh

ImMesh: An Immediate LiDAR Localization and Meshing Framework

🛑 C++ 🛣 476 😵 37

ziv-lin/README.md

Overview

I am Jiarong Lin (林家荣), a Ph.D. candidate at The University of Hong Kong (HKU) (論. My research interests lie in the areas of Simultaneous Localization and Mapping (SLAM), 3D reconstruction, and Multi-Sensor Fusion. I am the **first author** of **9 paper**, including **2×T-RO**, **1×T-PAMI** (in revision), **1×RA-L** *journal*, and **3×ICRA**, **2×IROS** *conference paper*. For a detailed list of my publications, please go to the next page or click here to my <u>Google</u> <u>Scholar</u>.

Projects

Packages

In addition to my academic pursuits, I am also an active open-source contributor O. I have been greatly benefited from open-source communities, and correspondingly, I have dedicated my contributions to this community as well. I have made all the code for my publications available on GitHub, where it has received over 7.8k stars O from the community. Some of my most popular works include R3LIVE (\pm 1.8k), FAST-LIO (\pm 2.1k), loam-livox (\pm 1.4k), R2LIVE (\pm 0.7k), and ImMesh (\pm 0.5k).

I am dedicated to producing high-quality research and making meaningful contributions to both academics and industry.

r2live

R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping package

🛑 C++ 🛣 690 🛛 😵 190

<mark>, STD</mark>

A 3D point cloud descriptor for place recognition

🛑 C++ 🛛 🛣 423 🛛 😽 51