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MARSIM: A light-weight point-realistic simulator
for LiDAR-based UAVs
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Abstract—The emergence of low-cost, small form factor and
light-weight solid-state LiDAR sensors have brought new op-
portunities for autonomous unmanned aerial vehicles (UAVs)
by advancing navigation safety and computation efficiency. Yet
the successful developments of LiDAR-based UAVs must rely on
extensive simulations. Existing simulators can hardly perform
simulations of real-world environments due to the requirements
of dense mesh maps that are difficult to obtain. In this paper,
we develop a point-realistic simulator of real-world scenes for
LiDAR-based UAVs. The key idea is the underlying point ren-
dering method, where we construct a depth image directly from
the point cloud map and interpolate it to obtain realistic LiDAR
point measurements. Our developed simulator is able to run on
a light-weight computing platform and supports the simulation
of LiDARs with different resolution and scanning patterns (e.g.,
spinning LiDARs and solid-state LiDARs), dynamic obstacles,
and multi-UAV systems. Developed in the ROS framework, the
simulator can easily communicate with other key modules of an
autonomous robot, such as perception, state estimation, planning,
and control. Finally, the simulator provides 10 high-resolution
point cloud maps of various real-world environments, including
forests of different densities, historic building, office, parking
garage, and various complex indoor environments. These realistic
maps provide diverse testing scenarios for an autonomous UAV.
Evaluation results show that the developed simulator achieves
superior performance in terms of time and memory consumption
against Gazebo and that the simulated UAV flights highly match
the actual one in real-world environments. We believe such a
point-realistic and light-weight simulator is crucial to bridge
the gap between UAV simulation and experiments and will
significantly facilitate the research of LiDAR-based autonomous
UAVs in the future.

Index Terms—Aerial Systems: Simulator, LiDAR, Perception
and Autonomy

I. INTRODUCTION

Recent developments of LiDAR technologies have signifi-
cantly lowered the cost and weight of LiDAR sensors, which
creates many opportunities for unmanned aerial vehicle (UAV)
applications, such as mine exploration [1], biological data
statistics [2], mapping [3], high-speed navigation [4], and
obstacle avoidance, etc. However, deploying UAVs to these
widespread applications requires extensive tests, which are
often cost-demanding since the system under test are still in
active development and hence may have a noticeable failure
rate (e.g., collision with the environment). A simulator that
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Mechanical Engineering and Automation, Harbin Institute of Technology.
180320222@stu.hit.edu.cn. (Corresponding author: Fu Zhang).

Fig. 1: A demo of MARSIM. (a) is the point cloud map of the HKU
main building, one of ten real-world scenes of MARSIM; (b) A scan
of points of a Livox Avia LiDAR rendered directly from the point
cloud map by our simulator, and (c) is the photo of the corresponding
scene in real world. It can be seen that the simulator can restore the
structural details of the real scene with a high quality. More details
can be found in the attached video (also available at https://youtu.be/
hiRtcq-5lN0).

resembles the reality can significantly reduce the time and
equipment cost occurred in UAV tests and has become a crucial
component of UAV developments.

Most existing simulators (e.g., Gazebo [5], Webots [6],
Airsim [7]) have difficulties meeting the demand of high-
resolution realistic scene simulation for LiDAR-based UAVs
due to the following limitations: (i) the environments that the
mainstream simulators can simulate are mostly virtual, unre-
alistically simple, man-made environments, which possess a
considerable gap from complex real-world scenes; (ii) existing
simulators only import mesh maps, which are difficult to obtain
from real-world environments that are often measured in the
form of 3D point cloud data by laser scanners or LiDARs.
To the best of our knowledge, there are no open-source and
mature tools available for generating high-resolution and high-
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fidelity mesh maps out of point cloud data. The commonly-
used Poisson reconstruction [8] method is time-consuming and
has low-quality meshes on real point cloud data captured by
LiDARs due to occlusions and point density variations in large
scene scanning; (iii) the mainstream simulators often rely on
high-performance GPUs to achieve real-time simulations in
large complex mesh maps, which puts a high requirement for
computing platforms.

Motivated by these gaps, in this paper, we propose a light-
weight LiDAR-based UAV simulator, which has the following
features:

1) Directly utilizing point cloud maps of real environments
to render realistic LiDAR scans. The point cloud map
keeps fine details of the environments and can be easily
obtained using a LiDAR sensor.

2) Highly efficient in computation and memory consump-
tion, and able to run on personal computers without a
dedicated graphics processing unit (GPU) board.

3) Versatile, supporting the simulation of dynamic obsta-
cles, multi-UAV systems, and various existing LiDAR
models of different resolutions and scanning patterns
(Livox AVIA, Livox MID-360, Velodyne VLP-32, In-
telRealsense D455, etc.).

4) Open-source and ROS-compatible (https://github.com/
hku-mars/MARSIM.git). Users can easily integrate the
simulator with their modules developed in ROS, such
as simultaneous localization and mapping (SLAM) and
path planning modules, and conduct evaluations in real-
istic simulation environments swiftly.

II. RELATED WORKS

LiDAR-based UAV simulation consists of UAV motion
simulation and LiDAR simulation. Compared to the LiDAR
simulation, the UAV motion simulation is rather straightfor-
ward and mature. MATLAB can support many types of UAVs’
motion simulation and controller design, such as quadrotors [9]
and VTOL UAVs [10]. Common simulators such as Gazebo
[5] and Airsim [7] are also able to simulate the movement of
UAVs at high frequencies. Wei et al. [11] utilize the Gazebo
simulation to develop a multi-UAV path planning algorithm,
and Han et al. [12] simulate a UAV SE(3) planning in Airsim
and provide a benchmark for autonomous UAV racing.

The main challenge of LiDAR-based UAV simulation lies
in the LiDAR simulation. There are many existing simulators
that support LiDAR simulations, such as Gazebo [5], Webots
[6], Airsim [7] and, SVL [13]. Gazebo is probably the most
commonly used simulation platform for mobile robot research,
where users can build their own robots and LiDAR sensors.
This simulator has been widely used for the verification of
autonomous LiDAR-based exploration algorithms, such as
GBP [1], MBP [14], TARE [15] and Splatplanner [16]. SVL
simulates a LiDAR mounted on a vehicle rooftop in an urban
environment for the application of autonomous driving.

The main drawback of these simulators is that they import
maps in the form of mesh models, which are often available
for artificial environments modeled by 3D modeling software

(e.g., Sketchup, Blender, 3DS Max, etc.) or built based on
Gazebo model library. For instance, Splatplanner made eleven
artificial maps in Gazebo [16, 17], and TARE made five
larger artificial maps in Gazebo for algorithm verification.
Besides, DARPA subterranean competition [18] provides a set
of tunnel and mine maps where most of them are manual-
made. Artificial, manual-made maps can meet some basic
simulation requirements, but most of them are relatively simple
and unrealistic, leading to a large gap from complex real-world
environments.

A more common representation form of real-world envi-
ronments is point cloud, which can be collected by devices
such as 3D laser scanners or LiDAR sensors. To fill the gap
between simulation and reality, some existing works attempt to
provide realistic mesh maps from point clouds. For example,
LiDARsim [19] generates realistic mesh maps using surfel-
based method [20] for realistic self-driving simulation. Other
methods have also been developed to construct realistic mesh
maps from point clouds, such as Poisson reconstruction [8],
Truncated Signed Distance Field (TSDF) volume method [21],
and Delaunay triangulation method [22, 23]. However, these
methods are not robust to occlusion and point density variation
that often occur in point clouds collected by LiDARs in
large-scale scenes. In this case, non-existent surfaces may be
falsely generated which require extra labor work to fix or tune
the parameter. To overcome these issues, FlightGoggles [24]
separately construct each individual object in the scene in a
commercial software Reality Capture and then synthesize them
with the background to build a highly realistic simulation envi-
ronment. This approach is not very scalable since is very time-
and labor-consuming to model each object and synthesize the
scene (FlightGoggles [24] provides only two scenes). Finally,
high-resolution mesh models are also challenging to render in
real time without high-performance GPUs.

A question arises whether we really need mesh maps for
LiDAR simulation. Mesh models have the advantage to attach
material texture recovered from camera images, which can then
render images for camera simulation. However, for LiDAR
simulation, such texturing is not necessary. Moreover, thanks
to the recent developments of low-cost, high-precision LiDAR
sensors and simultaneous localization and mapping (SLAM)
algorithms [25, 26], obtaining high-precision point clouds of
real-world environments are becoming much more affordable
and accessible. Motivated by this trend, we choose to directly
use point cloud maps for simulation instead of mesh maps.
A similar idea has been preliminarily explored in FUEL [27],
but the presented simulator has limited resolution and accuracy
that is suitable for only depth cameras in small scenes due to
the high computation cost.

III. SYSTEM OVERVIEW

As shown in Fig. 2, our UAV simulator is mainly composed
of three submodules: a built-in flight controller module, a
dynamics and kinematics simulation module, and a LiDAR
simulation module (modules in black, see Fig. 2). The sim-
ulator is able to interact with planners, SLAM algorithms,

https://github.com/hku-mars/MARSIM.git
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Fig. 2: The overall framework of our simulator (black dashed box) and how it interacts with external modules in ROS.

and visualization modules in the ROS framework, forming a
complete LiDAR-based UAV simulation system.

To use the simulator, users should first choose a LiDAR
model and supply a point cloud map of the environment.
Users can then plug in their own SLAM (or use ground-
true odometry) and Planner algorithms to the UAV simulator
via the ROS topic names shown in Fig. 2 for verification
and visualization. Once the simulator starts, the dynamics and
kinematics simulation module starts to compute the UAV’s
odometry and IMU data, according to which the LiDAR
simulation module then renders the LiDAR scanned point
cloud. The simulated IMU data and LiDAR scans are published
in ROS, which could be used by the SLAM and then by the
planner module. Besides the static environments represented
by the point cloud map, the LiDAR simulation also simulates
point measurements on dynamic obstacles and other UAVs in
real time.

IV. METHODOLOGY

A. LiDAR simulation

Given a point cloud representation of the environment (see
Sec. V) and the current LiDAR pose, the LiDAR simulation
module aims to render the points that should be measured
in the current LiDAR scan. To do so, we first project all
points of the point cloud map into the current LiDAR FoV
and perform interpolation to obtain a dense depth image of
θres angular resolution and then mask those points that are not
on the scanning pattern. The remaining depth pixels are finally
added with LiDAR measurements noises and transformed to
point clouds for publishing (see Fig. 3). To accelerate the
point projection process, we perform two key preprocessing
when importing the point cloud map: 1) to limit the number of
map points, we conduct spatial downsampling with a spatial
resolution rmap on all map points; 2) we cut the map space
into equal large voxels (with cube length l) and save the map
points contained in each voxel in its respective point list. When
rendering the LiDAR point cloud, we screen out voxels having
intersection with the current LiDAR FoV, only points in these
voxels are projected.

1) Occlusion culling: While effectively limiting the number
of map points, spatial downsampling will cause two problems.
One is that the projected points do not uniformly populate the
depth image due to the projection principle: points close to
the LiDAR sensor are very sparse while those that at far are
very dense, resulting in many empty depth pixels (as shown in
Fig. 3 (a)). Another problem is that after projected to the depth
image, points on background objects will intervene in points on
foreground objects and hence cause false depth measurements.
To address these issues, we perform an occlusion culling
process as follows.

Due to the spatial downsampling with resolution rmap, a
point in the map should really represent a cube of substance
with length rmap (see Fig. 4(a)). Therefore, the interpolation
range θmax around a map point p on the depth image is the
projected area of the point’s corresponding cube:

θmax = arcsin

( √
3
2 rmap

d

)
(1)

where d is the depth of the map point p. Pixels within the
interpolation range θmax will have their depth values set to d. If
the interpolation ranges of different map points have overlaps,
the overlapped pixels will retain the smallest depth value.

2) Plane correction: The occlusion culling works well
when the LiDAR laser ray is perpendicular to the object’s
surface. However, when the laser ray is not perpendicular
to the surface, the interpolated points will go out of the
surface (see blue point clouds in Fig. 4 (b)), which causes
unexpected false point measurements. To address this issue,
when interpolating the neighbor of a map point, we view
the map point as a small plane and interpolate pixels in
the interpolation range θmax by calculating the intersection
point between the pixel ray and the plane (see Fig. 4 (c)).
The small plane around each map point is fitted from its
neighboring points in the map during the preprocessing stage
and the estimated plane normal is saved along with the map
point. Since the depth calculation from a plane is more time-
consuming, we perform such plane correction only for map
points genuinely on a plane. This is achieved by introducing
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Fig. 3: Illustration of LiDAR simulation. (a) is the sparse depth image
which directly projects map points to the image. (b) is the dense
image after interpolation. (c) shows the depth image masked with the
LiDAR scanning pattern (a Livox Avia LiDAR). (d) shows the final
output LiDAR point clouds.

a new variable γ of each map point, which indicates the plane
quality of the point. The value γ is computed as the plane
thickness during the plane fitting and is saved along with the
plane normal and map point. During online rendering, only
map points with γ below a certain threshold will perform the
plane correction.

3) GPU acceleration: When the map resolution increases,
the size of point clouds expands gradually to millions, and
the time for projecting map points onto the depth image
will increase considerably. In this case, only using the cen-
tral processing unit (CPU) can no longer meet the real-
time requirements. To address this issue, we utilize Graphics
Processing Unit (GPU) hardware to accelerate the LiDAR
simulation process. Affordable CPU-integrated or standalone
GPUs are widely available in standard personal computer and
hence does not degrade the generality of our simulator. They
are also well supported by Open Graphics Library (OpenGL)
[28], which is a multi-platform general graphics rendering
library that can efficiently use GPU resources to project point
clouds onto depth image in our task. We propose a point cloud
parallel renderer based on OpenGL to accelerate the depth
image construction. With GPU acceleration, the simulator is
able to run in real time (more than 10 Hz) on point cloud maps
with tens of millions of points in the map.

B. Dynamics and kinematics simulation

In order to simulate a realistic UAV flight, the simulator pro-
vides a dynamics and kinematics simulation of UAV according
to the standard rigid-body model [29]. The thrust and torque in
the dynamic model are generated from a second-order motor
model whose command is the expected motor speed [30]. The
model parameters (e.g., inertia matrix, mass, propeller torque,
thrust coefficients, motor KV value) are drawn from [29] and
are summarized in a separate configuration file where users
may modify as needed. The computed angular velocity and
special acceleration are added with measurement noises and
biases to obtain the IMU measurements for publishing. The
complete ground-true UAV state is also published for external
reference.

C. Flight controller design

After the motion simulation of a UAV, a controller is needed
to accurately control the UAV flight. Our simulator adopts a
cascaded dual-loop PID controller as shown in [31], where
the inner loop is an attitude controller, and the outer loop
is a position controller. According to the UAV dynamic and

Fig. 4: The principle of occlusion culling and plane correction. (a)
demonstrates the geometric principle to compute the interpolation
range of each point. (b) demonstrates the problem of occlusion culling
on large planes and (c) demonstrates the plane correction.

kinematic model parameters, the controller gains are tuned
based on the expected natural frequency and system damping
ratio to achieve a good position control performance.

D. Dynamic obstacles simulation and collision detection

To mimic the real environment where dynamic obstacles
may appear, the simulator supports the simulation of dynamic
obstacles. We randomly generate a certain number of spherical
dynamic objects and point clouds on the objects’ surfaces.
Each spherical object moves at a constant velocity in a random
direction. When one spherical object moves out of the map
boundary, a new one is generated at a random location in the
map. The number, size, and speed of the spherical objects can
be modified by users if necessary.

To best simulate a reality, the simulator conducts a collision
check at each simulation step to detect if the UAV collides with
obstacles (static or dynamic) in the environment. To achieve
this, the simulator establishes two KD-Trees, one is built from
the global map points at the preprocessing stage and the other
is built from points on the dynamic objects at each simulation
step. Then, the simulator searches for nearest neighbor points
within the range equal to the UAV size. If any points are found
in the range, the UAV is deemed as colliding with obstacles,
and the simulator would output a collision warning.

E. Decentralized Multiple UAV simulation

A notable trend in UAV research is swarm navigation and
control. To enable such research, our simulator supports the
simulation of UAV swarm systems. To distribute the computa-
tion load and make the simulator more scalable to swarm size,
the simulation is completely decentralized, where each UAV
is simulated in one separate thread (as a ROS node) or com-
puter. Different threads or computers communicate via ROS
communication. This way, multiple UAV simulations can be
distributed to multiple light-weight computers with local area
network (LAN) connection. In order to simulate the interaction
between multiple UAVs more realistically, the simulator adds
a mutual observation function: at each simulation step, a set
of points are sampled on a UAV surface (approximated as a
cube of the UAV size), the sampled points are then added to
the global point cloud map to render the rest UAVs’ LiDAR
scan.
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Fig. 5: High-resolution point cloud maps provided by the simulator with detailed information shown in Table I.

TABLE I: Ten realistic point cloud maps and their features.

MARSIM Maps Size (m)
Large-
scale

Multi-
layer

Cluttered
Obstacles

Narrow
corridor

Thin
Structures

Real-world
Environments

Historical Building (Fig. 1 (c)) 47×20×23 X X X X
Large Office (Fig. 5 (a)) 45×16×6 X X X X X X
Indoor-2 (Fig. 5 (b)) 27×40×7 X X X
Common Forest (Fig. 5 (c)) 48×27×19 X X X X
Simple Parking Garage (Fig. 5 (d)) 45×15×5 X X
Simple Forest (Fig. 5 (e)) 45×16×6 X X X X
Indoor-1 (Fig. 5 (f)) 17×13×9 X X X X
Complex Parking Garage (Fig. 5 (g)) 62×12×10 X X X
Dense Forest (Fig. 5 (h)) 30×72×19 X X X X X
Indoor-3 (Fig. 5 (i)) 21×48×4 X X X

V. REALISTIC HIGH-RESOLUTION POINT CLOUD MAP
CONSTRUCTION

To enable realistic interaction between the UAV and the
environment in the simulator, we construct point cloud maps
from actual scenes. In order to restore the realistic environment
as much as possible, we put forward two requirements for
the point cloud map: high resolution and high precision. To
fulfill these requirements, we use a hand-held device carrying
a Livox Avia sensor (detailed in [32]) to scan the environment.
The non-repetitive scanning of Livox Avia LiDAR enables
the map points to be accumulated to a high resolution even
when the LiDAR is placed at a stationary position. This
reduces the effect of point density variation caused by LiDAR
motion. To register all LiDAR scans under the same global
frame, we use FAST-LIO2 [25] to construct a rough map

and then utilize [26] to globally refine the map quality by
LiDAR bundle adjustment. The globally registered point cloud
map is imported to CloudCompare software, where statistical
outlier removal (SOR) filter and spatial downsampling are
used to generate a uniform clean point cloud map. SOR
filter is a filter that computes each point’s average distance
to its neighbors and removes the points having a relatively
large distance (i.e., isolated noisy points). After filtering the
outlier points, we manually fill some points in corners that
the LiDAR scan cannot reach in real world. Using the above
methods, we scanned ten real-world environments and obtained
corresponding high-precision point cloud maps for the use of
the simulator. The method can also be used to obtain point
cloud maps of man-mand environments represented by mesh
models if needed.
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Fig. 6: Detailed structure of indoor-1 and indoor-2 maps. (a) shows
several clear ladders in indoor-1 map and (b) shows many complex
equipment in a machine workshop.
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Fig. 7: Time consumption for rendering one Livox AVIA scan on a
light-weight computation platform (NUC).

VI. RESULTS

A. High-resolution realistic Point Cloud Maps

This paper provides high-resolution (0.01 m) point cloud
maps of ten real scenes for users to simulate, as shown in Fig.
5. Some of their environmental features can be seen in Table I,
which can be used for reference when choosing a simulation
map. The 0.01-m resolution map here refers to the original
point cloud processed by the 0.01-m spatial downsampling.
The scenes of the ten maps are three forests, three indoor
scenes, a historical building (the HKU main building), two
parking garages, and a large office. Detailed structures in real
environments can be clearly seen in the close-up point clouds
shown in Fig. 6.

B. Breakdown of computation resources consumption

We compare the time consumption between MARSIM sim-
ulator and the Gazebo simulator. Since Gazebo can only use
mesh models, we transform the point cloud maps of respective
resolutions (see below) to mesh models using Poisson recon-
struction method [8]. We select five typical scenes and compare
the time and memory consumption of rendering one scan of a
Livox Avia LiDAR (77°×70° FoV, 385×350 resolution, 30-
m sensing range), respectively. For each map, we test two
cases: a high-resolution map (0.05m resolution) and a low-
resolution map (0.2 resolution). The data is generated by
randomly selecting 10 positions and yaw angles of the UAV.
The running time comparison on a light-weight computing
platform NUC 10 Kit (with an i7-10710U max frequency
4.70-GHz CPU, 32-G RAM) is shown in Fig. 7. It can be
seen that in low-resolution maps, even the CPU version of
MARSIM can achieve slightly less computation time than the
GPU-accelerated Gazebo simulation. With GPU acceleration,
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Fig. 8: Time consumption for rendering one Livox AVIA scan on all
10 realistic point cloud maps. The X-axis labels the name and size
of the point cloud map.

TABLE II: Memory consumption comparison with Gazebo on a light-
weight computation platform (NUC).

Resolution Map
RAM Consumption (GB)

Gazebo MARSIM
CPU GPU

0.2 m

Historical building 1.64 1.01 1.31
Complex Parking Garage 1.46 1.1 1.25
Large Office 1.68 1.04 1.13
Common Forest 1.48 1.37 1.73
Indoor-2 2.09 0.94 1.14

0.05 m

Historical building 6.97 4.04 3.43
Complex Parking Garage 6.72 3.51 3.06
Large Office 4.93 2.87 2.17
Common Forest 16.88 7.35 3.53
Indoor-2 3.73 2.51 1.84

MARSIM is two times faster than Gazebo. In high-resolution
maps, the difference is even more obvious: the CPU version
of MARSIM is two times faster than the GPU-accelerated
Gazebo simulation while the GPU version of MARSIM is ten
times faster. The reason why Gazebo performed poorly in the
experiments is because of the large number (over 2 million)
of triangular faces in the generated mesh maps, which is
necessary to retain a level of detail similar to the corresponding
point cloud. In contrast, most existing robot simulations use
very simple mesh maps, which are mainly composed of large
planes and have a small number of triangular faces, which
can be simulated in real time. Moreover, as a simulator
specifically designed for point cloud, MARSIM does not need
to process the whole render pipeline to render meshes (e.g.,
reducing the process of fragment shader, ray tracing, etc.)
and complex physics simulation (like collision simulation),
which decrease the consumption of computation resources
significantly. Finally, we perform time consumption for all ten
maps in 0.05-m and 0.2-m resolution with the same sensor. As
shown in Fig. 8, in all cases, the simulator is able to run in
real time at 10 Hz.

In addition to the time consumption comparison, we also
collected the RAM consumption as shown in Table II. The
RAM consumption of our simulator is about half that of
the Gazebo simulator in both the CPU and GPU versions,
which also demonstrates the light-weight characteristics of our
simulator.
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Fig. 9: Comparisons between flight trajectories in simulation and
actual environment. (a) and (b) represent two experiments in different
environments. The red lines are the trajectory results from the
simulation, the blue lines are the actual flight trajectories.

Fig. 10: Various LiDAR scan pattern support including Livox Avia
(a), D455 (b), Livox Mid-360 (c), and VLP 32 (d), respectively.

C. Experiment verification

To demonstrate that our simulator can provide flight simu-
lation similar to real experiments, we verify the simulation of
a UAV planning method, the Bubble planner [4], in an actual
environment. To do so, we build a quadrotor UAV equipped
with a Livox Mid360 LiDAR as used in [4]. Then, we handheld
the UAV to manually scan the actual environment, which is a
forest scene, and build its point cloud map. We simulate the
Bubble planner in our simulator using the collected point cloud
map and compare the simulated UAV flight trajectory with that
of the real experiment with the same start position and target
position. The comparison is shown in Fig. 9. As can be seen,
the trajectories from the simulation are very close to the actual
ones, which verifies the practicability of this simulator.
D. Support of different types of LiDARs and other functions

In order to increase the simulator’s versatility, a variety of
common LiDAR and depth camera models are also provided
in the simulator. As shown in Figure 10, the simulator sup-
ports sensors such as Livox Avia, Livox Mid-360, VLP-32,
VLP-64, OS1-32, and Intel realsense D455. The simulator
can reproduce the scanning patterns of these sensors so that
users can use them directly without tuning any parameters.
Moreover, dynamic obstacles and multi-UAV simulations are
also supported, as shown in Fig. 11 and Fig. 12.

Fig. 11: Dynamic obstacles simulation in the historical building map.
The blue balls are the dynamic obstacles, the yellow point clouds are
the points scanned by a VLP-32 LiDAR.

Fig. 12: Multi-UAV planning simulation. The pink models are the
UAVs, and the red curves are the trajectories of the drones, avoiding
the obstacles of a realistic forest map.

Fig. 13: Demonstration of a UAV autonomous exploration simulation
in indoor-2 map, utilizing FUEL algorithm. The area scanned by the
UAV after different executing times are shown.

E. Practical applications of the simulator

This simulator is mainly used to provide a testing and
verification platform for the algorithm development of LiDAR-
based UAVs, especially motion planning and autonomous ex-
ploration algorithms that require interaction with the environ-
ments. While previous experiments have shown the application
of our simulator in UAV motion planning, we also carried
out simulation experiments of autonomous UAV exploration.
Fig. 13 shows the autonomous exploration process of a UAV
carrying Livox Avia using FUEL [27] algorithm in the indoor-
2 map. It is worth mentioning that the simulator has been
successfully used to assist the development of multi-UAV
mutual location in [33] and motion planning algorithm in
[4, 34].

VII. CONCLUSION AND DISCUSSION

This paper proposes a LiDAR-based UAV simulator for real
environment simulation on light-weight computing platforms.
The simulator renders LiDAR scans directly on point cloud
maps, which is way easier to capture for real environments than
mesh models used by existing simulators. Moreover, due to
the high accuracy of modern 3D LiDARs and laser scanners, a
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point cloud map scanned from real environments can truthfully
represent the environment, which dramatically bridges the gap
between simulation and reality. To maximize the practicality
of the simulator, we further provide ten high-resolution point
cloud maps and support the simulation of various types of
LiDAR sensors, dynamic obstacles, and multi-UAV simulation.
These features can meet the research and development needs
of motion planning algorithms and autonomous exploration
algorithms of single or multiple UAVs.

Since the simulator is based on point cloud maps, when the
accuracy of the map is not high enough or there are noise
points, the simulator cannot restore the correct details of the
real environments. Also, the advantage in the computation
efficiency of the simulator may degrade if a LiDAR scan is
sparse, where the time for ray-casting on mesh models used by
Gazebo (and other existing simulators) is reduced significantly.
In contrast, the rendering module of our simulator has to
generate a dense depth image not just on the scanning pattern,
which leads to a waste of computing resources to calculate
unnecessary depth image pixels. It could be an improvement
direction of the simulator in the future.
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