
1

ImMesh: An Immediate LiDAR Localization and Meshing Framework

Jiarong Lin˚, Chongjiang Yuan˚, Yixi Cai, Haotian Li, Yuying Zou, Xiaoping Hong and Fu Zhang

Fig. 1: (a) shows the triangle mesh that is online reconstructed by our proposed work ImMesh, where the white path is our sampling trajectory,
and the yellow frustums are the estimated sensor pose. In (b), we use the estimated camera poses (the yellow frustums) of R3LIVE for
texturing the mesh with the collected images. Based on ImMesh, we developed a lossless texture reconstruction application, with one of our
results shown in (c). Our accompanying video that shows details of this work is available on YouTube: youtu.be/pzT2fMwz428.

Abstract—In this paper, we propose a novel LiDAR(-inertial)
odometry and mapping framework to achieve the goal of si-
multaneous localization and meshing in real-time. This pro-
posed framework termed ImMesh comprises four tightly-coupled
modules: receiver, localization, meshing, and broadcaster. The
localization module utilizes the prepossessed sensor data from
the receiver, estimates the sensor pose online by registering
LiDAR scans to maps, and dynamically grows the map. Then,
our meshing module takes the registered LiDAR scan for in-
crementally reconstructing the triangle mesh on the fly. Finally,
the real-time odometry, map, and mesh are published via our
broadcaster. The key contribution of this work is the meshing
module, which represents a scene by an efficient hierarchical
voxels structure, performs fast finding of voxels observed by
new scans, and reconstructs triangle facets in each voxel in
an incremental manner. This voxel-wise meshing operation is
delicately designed for the purpose of efficiency; it first performs
a dimension reduction by projecting 3D points to a 2D local plane
contained in the voxel, and then executes the meshing operation

˚These two authors contribute equally to this work.
J. Lin, C. Yuan, Y. Cai and F. Zhang are with the Department

of Mechanical Engineering, The University of Hong Kong, Hong Kong
SAR, China. tjiarong.lin, ycj1, yixicai, haotianl,
zyycici, fuzhangu@connect.hku.hk

C. Yuan and X. Hong are with the School of System
Design and Intelligent Manufacturing, Southern University
of Science and Technology, Shenzhen, People’s Republic of
China.tyuancj2020,hongxpu@sustech.edu.cn

with pull, commit and push steps for incremental reconstruction
of triangle facets. To the best of our knowledge, this is the first
work in literature that can reconstruct online the triangle mesh
of large-scale scenes, just relying on a standard CPU without
GPU acceleration. To share our findings and make contributions
to the community, we make our code publicly available on our
GitHub: github.com/hku-mars/ImMesh.

Index Terms—Mapping, 3D reconstruction, SLAM

I. INTRODUCTION

Recently, the wide emergence of 3D applications such as
metaverse [1, 2], VR/AR [3], video games, and physical sim-
ulator [4] has enriched human lifestyle and boosted productive
efficiency by providing a virtual environment that alike the
real world. These applications are built upon triangle meshes
that represent complex geometry of real-world scenes. Triangle
mesh is the collection of vertices and triangle facets, which
serves as a fundamental tool for objects modeling in most
existing 3D applications. It can not only simplify significantly
the process and boost the speed of rendering [5, 6] and ray-
tracing [7], but also play an irreplaceable role in collision
detection [8, 9], rigid-body dynamics [10, 11], dense mapping
and surveying [12], sensor simulation [13], etc. However,
most existing mesh is manufactured by skillful 3D modelers
with the help of computer-aided design (CAD) software (e.g.,

https://youtu.be/pzT2fMwz428
https://github.com/hku-mars/ImMesh

2

Solidworks [14], blender [15], etc.), which limits the mass
production of large-scene meshing. Hence, developing an
efficient mesh method that could reconstruct large scenes in
real-time draws increasing research interests and serves as a
hot topic in the community of 3D reconstruction.

Performing mesh reconstruction in real-time is particularly
important in practical usages. Firstly, online mesh reconstruc-
tion indeed makes data collection effective by providing a
live preview, which is quite important to give a reference for
users. Especially for those non-expert users, a live preview can
serve as a feedback about which parts of the scene have been
reconstructed in good quality already and where additional
data is needed. Secondly, online mesh reconstruction can
immediately output the mesh of scene once data collection
is complete, saving additional post-processing time of offline
mesh reconstruction and hence boosts the productivity of
mass production. Thirdly, it is particularly important for those
real-time applications, especially for fully autonomous robotic
applications, a real-time update of mesh can provide better
maps with denser representation and of higher accuracy, which
can enable the agent to better navigate itself.

Reconstructing the mesh of large scenes from sensor mea-
surements in real-time remains one of the most difficult
problems in the fields of computer graphics, 3D vision, and
robotics, which require reconstructing the surfaces of scenes
with triangle facets that are adjacently connected by edges.
This is a challenging problem that needs to build the geometry
structure with very high accuracy, and the triangle facet should
be reconstructed on surfaces that actually exist in the real
world. Besides, a good mesh reconstruction method should
also suppress the appearance of holes on the reconstructed
surface, and avoid the reconstruction of triangle silver (i.e., the
noodle-like triangles that have a shard acute angle). Real-time
mesh reconstruction in large scenes is even more challenging
as it further requires the reconstruction to operate in an
efficient, incremental manner.

In this work, we propose a real-time mesh reconstruction
framework termed ImMesh to achieve the goal of simultaneous
localization and meshing on the fly. This is a well-engineered
system that is comprised of four tightly-coupled modules
delicately designed for efficiency and accuracy. To the best
of our knowledge, this is the first work in literature that can
reconstruct the triangle mesh of large-scale scenes online and
with a standard CPU. The main contributions of our work are:

‚ We propose a novel system that can estimate the sen-
sor pose and reconstruct the mesh of the surrounding
environment both online. Its localization is built upon
our previous work VoxelMap [16], which can estimate
the sensor pose of better efficiency and higher accuracy
over its counterparts (e.g., FAST-LIO2 [17], SUMA [18],
MULLS [19], Lego-LOAM [20], etc.). Its meshing mod-
ule implements a novel mesh reconstruction approach,
which efficiently reconstructs the mesh in an incremental
manner, and can achieve real-time performance in large-
scale scenarios on a standard desktop CPU.

‚ We implement a novel mesh reconstruction method in
our meshing module, which directly utilizes the registered
LiDAR point as mesh vertices, online reconstructing the

triangle facets (i.e., the indices of three triangle points) in
an incremental manner. Specifically, our meshing module
first utilizes an efficient hierarchical voxel data structure
for fast finding of voxels containing points in new scans.
Then, the voxel-wise 3D meshing problem is converted
into a 2D one by performing dimension reduction. Fi-
nally, the triangle facets are incrementally reconstructed
with the voxel-wise mesh pull, commit and push steps.

‚ We evaluate the runtime performance and meshing ac-
curacy of ImMesh by conducting extensive experiments.
We first verify the overall performance by presenting live
video demonstrations of how the mesh is immediately
reconstructed in the process of data collection. Then
we extensively tested ImMesh with four public datasets
collected with different types of LiDARs in various
scenes. Finally, we evaluate the runtime performance and
meshing accuracy of ImMesh by comparing them against
existing baselines.

‚ We additionally demonstrate how real-time meshing can
be applied in potential applications by presenting two
practical examples. We first show that ImMesh can be
applied for LiDAR point cloud reinforcement, which can
output the reinforced points in regular pattern, and with
higher density and wider FoV compared to raw LiDAR
scan. Then, we combined ImMesh and our previous work
R3LIVE [21, 22] to achieve the goal of losslessly texture
reconstruction of scenes (see Fig. (b)), which is useful
for rapid field surveying.

‚ We make ImMesh publicly available on our GitHub:
github.com/hku-mars/ImMesh1 for sharing our
findings and making contributions to the community,

II. RELATED WORKS

In this section, we discuss the related works of mesh
reconstruction based on 3D point cloud, which are closely
related to this work. Depending on whether the reconstruction
processes can perform online, we categorize existing mesh
reconstruction methods into two classes: offline methods and
online methods.

A. Offline mesh reconstruction

The offline methods usually require a global map in prior,
for example, the full registered point cloud of the scene.
Then, a global mesh reconstruction process is used to build
the mesh. In this category, the most notable works include:
methods based on Poisson surface reconstruction (Poisson-
based), and methods based on Delaunay tetrahedralization
(i.e., 3D Delaunay triangulation) and graph cut (Delaunay-
based).

1) Poisson surface reconstruction (Poisson-based): Given
a set of 3D points with oriented normals that are sampled
on the surface of a 3D model, the basic idea of Poisson
surface reconstruction [23, 24] is to cast the problem of
mesh reconstruction as an optimization problem, which solves
for an approximate indicator function of the inferred solid

1Our codes will be released as this work is accepted.

https://github.com/hku-mars/ImMesh

3

whose gradient best matches the input normals. Then, the
continuous isosurface (i.e., the triangle mesh) is extracted
from the indicator function using the method [25, 26] that is
similar to adaptations of the Marching Cubes [27] with octree
representations.

Benefiting from this implicit representation, where the mesh
is extracted from the indicator function instead of being
estimated directly, Poisson surface reconstruction can produce
watertight manifold meshes and is resilient to scanner noise,
misalignment, and missing data. Hence, in the communities of
graphics and vision, these types of methods [23, 24, 28] have
been widely used for reconstructing the mesh from given 3D
scanned data.

2) Delaunay triangulation and graph cut (Delaunay-
based): In the category of offline mesh reconstruction meth-
ods, approaches [29]–[31] based on Delaunay tetrahedraliza-
tion and graph cut are also been widely used for generating
the mesh, based on the reconstructed 3D point cloud and the
sensor’s poses. The basic idea of this class of methods is first
to build a tetrahedral decomposition of 3D space by computing
the 3D Delaunay triangulation of the 3D point set. Then, the
Delaunay tetrahedra was labeled as “inside” or “outside” with
the globally optimal label assignment (i.e., the graph cut).
Finally, the triangle mesh can be extracted as the interface
between these classes.

Besides these two classes of methods, there exist other
offline surface mesh reconstruction algorithms such as the
ball-pivoting algorithm [32] that have been proposed in past
decades. However, they are usually not the first choice of
consideration due to the lower precision and worse efficiency
compared to Poisson- and Delaunay-based methods [33].

Unlike these offline mesh reconstruction methods, our pro-
posed work ImMesh can perform online in an incremental
manner without the whole point cloud of the scene. Besides,
ImMesh also achieves a satisfactory meshing accuracy that is
higher than Poisson-based and slightly lower than Delaunay-
based (see our experimental results in Section VIII-C).

B. Online mesh reconstruction
1) Voxel volume-based methods (TSDF-based): The online

mesh reconstruction method is predominated by TSDF-based
methods, which represent the scene in a voxel volumetric
theme. These methods implicitly reconstruct the mesh in a
two-step pipeline, which first establishes the truncated signed
distance to the closest surface of voxels, then extracts the
continuous triangle mesh by leveraging the Marching Cubes
algorithm [27] from volumes. TSDF-based methods are pop-
ularized by KinectFusion [34], with many follow-up works
focused on scaling this approach to larger scenes [35, 36],
adding multi-resolution capability [37, 38], and improving
efficiency [39]–[41]. Since these classes of methods can be
easily implemented with parallelism, they can achieve real-
time performance with the acceleration of GPUs.

Compared to these methods, our work ImMesh shows
several advantages: Firstly, in ImMesh, the triangle mesh is
directly reconstructed from the point cloud in one step, while
for TSDF-based methods, the mesh is implicitly built in a two-
step pipeline (i.e., SDF update followed by a mesh extraction).

Secondly, ImMesh is able to output the mesh in scan-rate (i.e.,
sensor sampling rate), while the mesh extraction of TSDF-
based methods is usually at a lower rate. Thirdly, ImMesh
achieves real-time performance by just running on a standard
CPU, while TSDF-based methods need GPU acceleration for
real-time SDF update. Lastly, TSDF-based methods require
adequate observation for the calculation of SDF of each voxel
w.r.t. the closet surface, which needs the data to be sampled by
a depth sensor of high resolution and moving at a low speed.
On the contrary, our work exploits high-accuracy LiDAR
points for meshing and is robust to points data of low density.

2) Surfel-based mesh reconstruction: Besides TSDF-based
methods, another popular approach is to represent the scene
with a set of points or surfels (e.g., oriented discs). For
example, in work [36, 42, 43], the maps are reconstructed with
point-based representation, and its “surface” is rendered with
the approaches of “point-based rendering” that originated from
the communities of computer graphics [44]–[46]. Besides,
in work [47] , the high-quality map is reconstructed with
surfel-based representations (i.e., use patches), such forms of
mapping representation are popularized in works [48]–[51].
To reconstruct a dense map, these classes of methods need
a large number of points or tiny patches to represent the
surface of models. This is an inefficient representation that
has high usage of system memory and computation resources.
In contrast, our work reconstructs the surface of models with
triangle mesh, which uses triangle facets of proper size that are
adjacently connected by edges. It is the most efficient solid-
model representation that has been widely adopted in most
modern 3D software.

Compared with works reviewed above, our proposed work
is in a class by itself, which contains the following advantages:

‚ It is an online mesh reconstruction method that recon-
structs the triangle mesh in an incremental manner. It
can achieve real-time performance in large-scale scenes
(e.g., traveling length reaches 7.5 km) by just running on
a standard desktop CPU.

‚ It explicitly reconstructs the triangle mesh by directly
taking the registered LiDAR points as meshing vertices,
performing the voxel-wise meshing operation as each new
LiDAR scan is registered.

‚ It is delicately designed for the purpose of efficiency, and
can achieve satisfactory meshing precision comparable to
existing high-accuracy offline methods.

III. SYSTEM OVERVIEW

Fig. 2 depicts the overview of our proposed system (Im-
Mesh), which consists of a map structure and four modules
that work jointly to achieve the goal of simultaneous localiza-
tion and meshing in real-time. As shown in Fig. 2, from left
to right are: receiver (in red), localization (in orange), map
structure (in green), meshing (in blue) and broadcaster (in
purple).

In the rest sections, we will first introduce our map struc-
tures in Section IV, which will show the detail of the data
structures that will be used in other modules. Next, we will

4

Fig. 2: This figure shows the overview of our proposed work ImMesh, which utilizes the raw input sensor data to achieve the goal of
simultaneous localization and meshing. It is constituted by four tightly-coupled modules and a map structure, from left (input) to right
(output) are: receiver (in red), localization (in orange), map structure (in green), meshing (in blue) and broadcaster (in purple).

introduce our receiver and localization module in Section
V. Then, we will present how our meshing modules work
in Section VI. Finally, in Section VII, we will introduce
the broadcaster module, which publishes the localization and
meshing results to other applications.

IV. MAP STRUCTURES

As shown by the map structures (in green) in Fig. 2, we
design four data structures, including a structure of meshing
vertices, a structure of triangle facets, an incremental kd-Tree
(ikd-Tree) for k nearest neighbors (kNN) search and down-
sampling, and a hierarchical-voxels structure representing the
3D space.

A. Mesh vertices
In ImMesh, mesh vertices are the points that constitute

the geometric structure (shape) of mesh. All mesh vertices
are stored in a global list. For the i-th entry of the list that
represents vertex Vi, it contains the following elements:

‚ Its 3D position PospViq P R3 in global frame (i.e., the
first LiDAR frame).

‚ The index(id) of this vertex IdpViq “ i, which is the
unique identification that indicates this point is the i-th
point that appended to map.

‚ The list of pointers to triangles facets T whose vertices
contain Vi:

Tri listpViq “ tPtrpTi1q, PtrpTi2q, ..., PtrpTimqu

(1)
where we use function Ptrp¨q to denote the pointer (i.e.,
C++ pointer) of p¨q.

B. Triangle facets

In ImMesh, a triangle facet describes a small surface that
exists in the reconstructed scene. It is maintained online by
our meshing module (see Section VI) and is asynchronously
copied to the broadcaster module for publishing. A triangle
facet T contains the following elements:

‚ The sorted indices Pts idpTq of three points that form
this triangle:

Pts idpTq “ ti, j, ku, i ă j ă k (2)

‚ The center CenterpTq and normal NormpTq (both in the
global frame) of this triangle:
CenterpTq “ pPospViq ` PospVjq ` PospVkqq {3 (3)
NormpTq “ n{p||n||q (4)
n “ pPospViq ´ PospVjqq ˆ pPospVkq ´ PospVjqq (5)

C. Incremental kd-Tree (ikd-Tree)

We maintain an incremental kd-tree to enable the fast kNN
search of mesh vertices. The ikd-Tree is proposed in our
previous work [17, 52], which is an efficient dynamic space
partition data structure for fast kNN search. Unlike existing
static kd-tree (e.g., kd-tree implemented in PCL [53] and
FLANN [54]) that require rebuilding the entire tree at each
update, ikd-Tree achieves lower computation time by updating
the tree with newly coming points in an incremental manner.
In ImMesh, we use the ikd-Tree for:

‚ Downsample the point cloud density to keep the min-
imum distance between any of two mesh vertices for
maintaining the triangle mesh at a proper resolution.

5

Hierachical
 voxels

Hash
table

L3-Voxel
O3

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.

Octree

Higher level
voxel O4+

Hierarchical
voxels

Hierachical
 voxels

Higher level
Voxel O3+

Mesh
vertices

etc.

L1-Voxel
O1

L2-Voxel
O2

Trianlge
facets

etc.

Octotree
H

as
h

 t
ab

le

World

World

..
.

Fig. 3: In ImMesh, the world is partitioned by hierarchical voxels. We
compactly store, access, and update the voxels in a spatial hashing
scheme.

‚ Enable the vertex dilation operation in our voxel-wise
meshing operation (see Section VI), which can erode the
gaps between neighbor voxels.

D. Hierarchical voxels

In our map, we partition the 3D space with hierarchical
voxels. As shown in Fig. 3, lower-level voxels contain those
of higher levels. These voxels of different levels are designed
with different sizes and for various purposes: the lowest level
(i.e., L1-Voxel) has the largest voxel size, which partition
the 3D space into small regions by uniform grids. Voxels in
this layer maintain a hash table of pointers that point to the
triangle facet whose center is located inside. This facilitates
the broadcaster for asynchronous copying of these triangle
facets (see Section VII-B). And, the size of the second layer
(i.e., L2-Voxel) is much smaller than the first layer, where the
voxels in this layer store the mesh vertices that constitute the
geometric structure of the mesh. Voxels of this layer allow
the meshing module to fast retrieve all in-voxel mesh vertices
for voxel-wise meshing operations (see Section VI). Lastly, as
shown in Fig. 3, the L2-Voxel and its sub-voxels form a typical
octree data structure, which is used in our localization module
for a further split of non-planar point clusters to achieve better
pose estimation (see Section V).

1) L1-Voxel O1: As illustrated in Fig. 3, we uniformly
partition the 3D world into many small regions with L1-Voxel.
To avoid large memory consumption in allocating regular
volumetric grids (e.g., in kinectFusion [34]), we compactly
store, access, and update the voxels with a spatial hashing
scheme alike [36]. We map the 3D world space into the hash
table via a hash function Hashp¨q, where the hash function
allows an efficient look-up of voxel blocks with the integer-
rounded world coordinates. The array of pointers to Voxel is
stored in the hash table.
Hashpx, y, zq “ Int Hashpxi, yi, ziq (6)

“ Modppxi ¨ p1q ‘ pyi ¨ p1q ‘ pzi ¨ p3q, nq (7)
xi “ Roundpx ˚ 100{rxq, yi “ Roundpy ˚ 100{ryq

zi “ Roundpz ˚ 100{rzq
(8)

where x, y, z are coordinates of 3D space, xi, yi, zi are spec-
ified integer rounded world coordinates, rx, ry, rz are the
voxel size in three dimensions, ‘ is the XOR operation, and
function Modpa, bq is the calculation of integer a modulus
another integer b. p1, p2, p3 are three large prime numbers for

reducing the collision probability [36, 55], n is the hash table
size. In our work, we set the value of p1, p2, p3 and n as
116101, 37199, 93911 and 201326611, respectively.

Notice that the hash table is unstructured, indicating that
the neighboring voxels are not stored spatially but in different
parts of the buckets (shown in Fig. 3). Besides, for resolving
the possible hash collision (i.e., two pieces of data in a hash
table share the same hash value), we adopt the technique in
[36], using the implementation of unordered map container
in C++ standard library (std) [56]. In this work, we access a
L1-voxel with a given 3D vector p “ rx, y, zsT P R3 by:

O1 “ Get L1 voxelpHashppqq (9)

Shown in Fig. 3, each L1-Voxel contains the voxels of the
higher hierarchical layer. To identify the work stage of L1-
Voxel, we use a flag to mark the status as either Sync-required
or Synced. These two statuses indicate the update flag related
to the data synchronization of triangle facets, as we will use
in Section VI-E and Section VII-B.

For each L1-Voxel, it stores and maintains a hash table of
pointers pointing to a triangle facet whose center is located
in the voxel. These pointers can be efficiently looked up via
Int Hashpi, j, kq in (6), where i, j, k are the sorted indices
(i.e., i ă j ă k) of three mesh vertices. These in-voxel triangle
facets are maintained (i.e., added or erased) by the meshing
module, and are asynchronously copied to broadcaster module
for publishing to other applications.

2) L2-Voxel O2 and voxels of higher layer: L2-Voxel is the
second biggest container, which stores an array of points that
point to all in-voxel mesh vertex, and contains the voxels of
higher layer. It is used in both of our localization and meshing
modules; in localization module, L2-Voxel stores the in-voxel
registered LiDAR points used to constitute planar features
for estimating the sensor pose; in meshing module, L2-Voxel
enables fast retrieval of all in-voxel mesh vertices and provides
the local estimated planar norm for projecting the 3D points
into the 2D plane.

For a L2-Voxel O2, it has a status flag indicating whether
it has new points appended. To be detailed, O2 is marked as
Activated if this voxel has new mesh vertices registered from
the latest LiDAR scan (see Section V-C). And the Activated
flag is reset as deactivated after the voxel-wise meshing
operation is performed on this voxel (see Section VI-G).

Similar to (9), we achieve fast access to a L2-Voxel with a
given 3D vector p “ rx, y, zsT P R3 through hash tables:

O2 “ Get L2 voxelpHashppqq (10)

where the hash function Hashp¨q in (10) and (9) are distin-
guished with different voxel size rx, ry, rz in (8).

For voxels of higher layer, e.g., voxel O3 of the third layer
and higher O3`, they are designed to partition the non-planer
points (in voxels of the higher layer) with a smaller spatial size
(higher resolution), which make them more likely to construct
a planar feature for localization, as introduced in the coming
section.

Notice that the voxels of L2- and higher levels construct an
Octree. We access the voxels of the third layer and higher in
a way similar to Octree [57].

6

V. RECEIVER AND LOCALIZATION

The receiver module is designed for processing and packag-
ing the input sensor data. As shown in the red box of Fig. 2,
our receiver module receives the streaming of LiDAR data
from live or offline recorded files, processes the data to a uni-
fied data format (i.e., customized point cloud data) that make
ImMesh compatible with LiDARs of different manufacturers,
scanning mechanisms (i.e., mechanical spinning, solid-state)
and point cloud density (e.g., 64-, 32-, 16-lines, etc.). Besides,
if the IMU source is available, our input module will also
package the IMU measurements within a LiDAR frame by
referring to the sampling time.

The localization module utilizes the input data stream of
receiver module, real-time estimating the sensor poses of
6 DoF and registering the points to map. Our localization
module is built upon our previous work VoxelMap [16], which
represents the surrounding environment with the probabilistic
representation, estimating pose with an iterated Kalman filter
by maximum a posterior.

In designing our localization module, we have noticed that
a number of works appeared in the literature recently, which
utilize the reconstructed mesh for improving the localization
accuracy of both visual-slam (e.g., [58]) and LiDAR-slam
system (e.g., [59]–[61]). However, in ImMesh, the online
reconstructed mesh is not used in our localization module
because: 1) our mesh is reconstructed with points that are
registered by the localization module, re-using mesh in lo-
calization will take more computation efforts and bring extra
latency in publishing the estimated pose. 2) the accuracy of our
localization module is indeed enough for most of the robotics
and surveying applications, which achieve the localization
results of better efficiency and higher accuracy compared to its
counterparts like FAST-LIO2 [17], SUMA [18], MULLS [19],
Lego-LOAM [20], etc. Despite this, we hold a positive attitude
toward seeking the possibility of improving the localization
accuracy with our online reconstructed mesh in future work.

A. Voxel map construction

Our localization is built by representing the surrounding en-
vironment with the probabilistic representation, which counts
both LiDAR measurement noises and sensor pose estimation
errors, and constructs the voxel-volumetric maps in a coarse-
to-fine adaptive resolution manner. But, in this work, we
mainly focus our attention on how to real-time reconstruct the
triangle mesh of the scene, and avoid introducing too many
complicated noise analyses that might confuse the reader. We
only discuss those processes in localization module that are
closely related to our meshing module in this paper. For the de-
tailed modeling and analysis of LiDAR’s measurement noise,
we recommend our readers to our previous work VoxelMap
[16].

For a LiDAR sampling point, we first compensate the in-
frame motion distortion with an IMU backward propagation
introduced in [17]. Let us use Lpi denote i-th LiDAR sampling
point after motion compensation, it is registered to world frame
as Wpi with the estimated sensor pose pWL R,WL tq P SEp3q:

Wpi “
W
L RLpi `

W
L t (11)

The register LiDAR points are stored inside the voxels (e.g.,
L2-Voxel), let us consider the distribution of points Wpi pi “
1, ..., Nq that are located inside the L2-Voxel. We have the
points covariance matrix A calculated as:

p̄ “
1

N

N
ÿ

i“1

Wpi, A “
1

N

N
ÿ

i“1

`

Wpi ´ p̄
˘ `

Wpi ´ p̄
˘T

(12)

where the symmetric matrix A depicted the distribution of
points. Let us perform the eigendecomposition of matrix A:

AU “

»

–

λ1
λ2

λ3

fi

fl

“

u1 u2 u3

‰

, λ1 ě λ2 ě λ3 (13)

where λ1, λ2, λ3 are the eigenvalues and u1,u2,u3 are the
correspondent eigenvectors.

If the minimum eigenvalue λ3 is less than a specified
threshold, which indicates that the points inside this voxel are
distributed on a thin planar surface, we regard all points Wpi
pi “ 1, ..., Nq as a planar feature. Otherwise, this voxel will
be further subdivided into voxels of higher level with smaller
size (i.e., L3-, L4-,..., voxel) until: 1) the tiers of layer reach
bound (set as tier-5 for our work) 2) the minimum eigenvalue
of points covariance matrix A of a voxel smaller than a given
threshold.

If points Wpi pi “ 1, ..., Nq inside the voxel indeed forming
a planar feature, whose minimum eigenvalue λ3 of its points
covariance matrix A less than a specified threshold. We
represent this planar feature by using its normal vector n and
a point q that lies in this plane. The normal vector is well
known as the eigenvector w.r.t. associated with the minimum
eigenvalus λ3, i.e., n “ u3 in (13). And point q “ p̄ is
calculated in (12).

B. State Estimation

1) Point-to-plane residual: In our localization module,
we solve the sensor pose by minimizing the Point-to-plane
residual. Given a LiDAR point Wpi predicted in the world
frame with the pose prior, we first find which voxel it lies
in by hashing with (10). Then, all the contained voxels of
higher layers are polled for a possible match with the point.
Specifically, let a sub-voxel contains a plane with normal ni
and center qi, we calculate the point-to-plane distance:

di “ nTi p
Wpi ´ qiq (14)

If point pi lies on the candidate plane with this point-to-
plane distance di falling within the 3-σ bound of the plane
measurement noise, we treat this point-to-plane pair as an
effective match and add it to the residuals for estimating the
sensor pose.

2) LiDAR pose estimation by maximum a posterior (MAP):
We build a LiDAR(-inertial) odometry system based on an
iterated error-state extended Kalman filter (IESKF) similar to
that derived in our previous works [17, 62]. Assume that
we are given a state estimation prior, which is provided
from a constant velocity assumption for LiDAR-only odom-
etry (e.g., Kitti dataset in our Experiment-1), or from IMU
propagation for LiDAR-inertial odometry (e.g., NCLT-dataset,

7

NTU-dataset, R3LIVE-dataset our self-collected data in Sec-
tion VIII). This will be fused with the point-to-plane distance
matched in Section V-B1 to form a maximum a posteriori
(MAP) estimation. Then, we solve this MAP problem by
leveraging an IESKF, which leads an optimal state estimation
of sensor pose pWL R,WL tq that is used for registering the
LiDAR point with (11).

C. Point cloud registration

After the state estimation, we perform the point cloud
registration for transforming each measurement point Lpi
from LiDAR frame to global frame (i.e., the first LiDAR
frame) with (11). This registered point cloud is then used
for: 1) Published to other applications with our broadcaster. 2)
Use for updating the probabilistic voxel map. 3) Appended to
map structure that serves as the mesh vertices for shaping the
geometry structure of our online reconstructed triangle mesh.

1) Update of voxel map: The registered LiDAR points are
used for constructing the probabilistic voxel map by updating
the point distributions (i.e, A in (12)), planar parameters
(i.e., n, q) and the correspondent uncertainties of all possible
hierarchical voxels. For the details of this voxel map update,
we refer the reader to our previous work [16]. Besides, if a
new register point does not lie on an existing L2 (or L1) voxel,
a new L2 (or L1) voxel will be created and added to the hash
table, after, this point will be added to the newly constructed
voxel.

2) Append of mesh vertices: The registered LiDAR points
are also used for forming the meshing vertices in map struc-
tures. To be detailed, we first leverage a voxel-grid filter for
downsampling register LiDAR point cloud. Then, to avoid
the appearance of tiny triangles in reconstructing the mesh,
we leverage the ikd-Tree (see Section IV-C) for keeping the
minimum distance between any of two meshing points. That
is, for each register LiDAR point Wpi in global frame, we
search for the nearest mesh vertex in map structure with ikd-
Tree, if the euclidean distance this point and the searhed vertex
smaller than a given threshold, we will discard this point.
Otherwise, this point will be used for: 1) Constructing a new
mesh vertex Vi, where i is the unique index that indicates Vi

is the i-th appended vertex. 2) Appending the pointer of Vi

to the ikd-Tree. 3) Pushing back the pointer PtrpViq to the
point array of the L2-Voxel O2

j that Vi located in. After, the
status flag of O2

j is set as activated for notifying the meshing
module for performing the voxel-wise re-meshing operation
(see Section VI).

VI. MESHING

In ImMesh, our meshing module takes the registered LiDAR
scan for incrementally reconstructing the triangle mesh on the
fly. We explicitly reconstruct the triangle mesh by directly
utilizing 3D registered LiDAR points as mesh vertex with
two considerations: 1) The points sampled by LiDAR and
registered via the ICP-based methods [63, 64] have very high
positional accuracy. Hence, they are capable of shaping the
geometric structure of the mesh. 2) A LiDAR measurement
point naturally lies on the surface of the detected object. That

is, a laser pulse is emitted from the infrared transmitter and
reflected by the surface of the detected object. The returned
pulse is captured by the receiver, and the ranging distance of
the sensor from the surface is finally calculated by counting
the time of flight (ToF).

A. Goals and requirements

With the accurate mesh vertices appended from the point
cloud registration in Section V-C, the problem of online mesh
reconstruction is converted to another goal, which is to seek a
proper way for real-time reconstructing the triangle facets with
a growing 3D point set. However, to the best of our knowledge,
this is a new area in the community that has not been explored
yet. Given a set of growing 3D points, our meshing module
is designed to incrementally reconstruct the triangle facets
considering the following four major requirements:

Firstly, precision is our prior consideration. For each recon-
structed triangle facet that represents the surface of the scene,
we require it to lie on an existing plane.

Secondly, the reconstructed mesh should be hole-less. In
the dense reconstruction of the surface triangle mesh, the
appearance of holes is unacceptable. To be detailed, these
holes lead to the wrong results in the rasterization of the depth
image, which wrongly rasterizes the surfaces behind a real
object to the front. Consequently, robotic applications based
on our meshing result might lead to severe accidents (e.g.,
crashing into a wall). Besides, the holes on surfaces make the
whole reconstructed map unsightly and chaotically.

Thirdly, the reconstruction of triangle mesh should avoid
constructing sliver triangles. The sliver triangle (i.e., the
noodle-like triangle), as defined in the communities of com-
puter graphic [65]: whose area is so thin that its interior does
not contain a distinct span for each scan line, has some unde-
sired properties in the field of computer graphics. For example,
these noodle-like triangles would cause some errors in the
numerical analysis on them [66]. Besides, these unfavorable
properties cause troubles in the pipelines of rendering (e.g.,
rasterization, texturing, and anti-aliasing [5, 6, 67]), Which
leads to the loss of accuracy in calculating (e.g., depth testing,
interpolation, etc.) the pixel values distributed near the sharp
angle [6, 68, 69].

Lastly, the complexity of triangle mesh reconstruction
should be computationally efficient to meet the requirement of
real-time applications. The time consumption of each meshing
process should not exceed the sampling duration of two
consecutive LiDAR frames.

B. Challenges and approaches

To achieve our goals of dense incremental meshing with
the four requirements listed above, our system is proposed
based on a deep analysis of the challenges. The challenges
and corresponding scientific approaches are briefed below:

The first challenge is that the global map is continuously
grown by the newly registered LiDAR points, with each update
of a LiDAR scan only affecting part of the scene. Hence,
for an incremental mesh reconstruction method, it should
be able to process only those parts of the scene with new

8

points appended in. In our work, we incrementally perform
the mesh reconstruction with a mechanism similar to git
[70]. For each incremental mesh update, we first retrieve
the data of the voxels with new mesh vertices appended via
the pull step (detailed in Section VI-E1). Then, an efficient
voxel-wise meshing algorithm is executed to reconstruct the
mesh with these data. The incremental modifications of newly
reconstructed results w.r.t. pulled results are calculated in
our commit step (detailed in Section VI-E2). Finally, these
incremental modifications are merged to the global map via
our push step (detailed in Section VI-E3).

Given a set of 3D vertices, the second challenge is how to
correctly and efficiently reconstruct the triangle facets repre-
senting the surfaces of the scene. Since it is hard to directly
reconstruct mesh from these mesh vertices in 3D space, our
work performs the meshing operation in 2D. To be detailed, for
vertices located in a small region (i.e., in L2-Voxel), we first
project them into a proper plane (i.e., the estimated plane given
by the localization module). The mesh of these 2D points is
constructed using the 2D meshing algorithms and is recovered
back to 3D (detailed in Section VI-D2).

C. Voxel-wise vertex retrieval

1) Retrieval of in-voxel vertices: To reconstruct the triangle
mesh in an incremental manner, the first step is to retrieve
the vertices that need to mesh with the newly added points.
In ImMesh, we use the hierarchical voxels (see Section IV-D)
for subdividing the 3D space into many regions. The flags that
indicate the status of each L1-Voxel are used for identifying
whether a L2-Voxel has newly appended mesh vertices (see
Section V-C).

Take an activated L2-Voxel O2
i as an example. We perform

a voxel-wise meshing operation to reconstruct the triangle
facets with all in-voxel vertices. Since the pointers of these
vertices are stored in a pointer array attached to O2

i , we
address these pointers to retrieve all in-voxel vertices, denoted
as VIn

i “ tVj1 ,Vj2 , ...,Vjmu.
2) Vertex dilation: In practice, if we perform the meshing

operation with only the in-voxel mesh vertices, the gaps
between neighborhood voxels will appear due to the absence of
triangles facets across voxels, as shown in Fig. 4(b). Motivated
by morphological operations (e.g., dilation and erosion) in
digital image processing [71], we perform the 3D point cloud
dilation for adding neighborhood points of VIn

i to erode the
gaps between voxels, as shown in Fig. 4(a).

For vertex Vij P VIn
i , we perform the radius-search

operation by leveraging the ikd-Tree (see Section IV-C) for
searching the nearest vertices of Vij with their euclidean
distance smaller than a given value dr (usually set as 1{4
of the size of L2-Voxel). Using Ṽij to denote the searched
neighbor vertices and Vi to denote the dilated vertices, we
have:

@V P Ṽij ,
ˇ

ˇ|PospVq ´ PospVij q
ˇ

ˇ | ď dj (15)

If V P Vij is not included in Vi, we add V by Vi “

Vi YV.

Fig. 4: The comparisons of mesh reconstruction with (a) and without
(b) the vertex dilation.

The full algorithm of our voxel-wise vertex retrieval is
shown in Algorithm 1.

Algorithm 1: Voxel-wise vertex retrieval of O2
i

Input : The activated voxel O2
i

Output: The retrieved vertex set Vi

Start : Copy all in-voxel pointer list to VIn
i .

Vi “ VIn
i .

1 foreach Vij P VIn
i do

2 Ṽij = RadiusSearch(Vij ,dr)
3 foreach V P Ṽij do
4 if V R Vi then
5 Vi “ Vi YV

Return: The retrived vertex set Vi after dilation

D. Dimensional reduction by projection

With the mesh vertices Vi retrieved from Algorithm 1, we
introduce the voxel-wise mesh reconstruction.

1) Projection 3D vertices on a 2D plane: Since it is hard to
directly mesh with Vi distributed in 3D space in real-time, we
simplify the 3D meshing problem to a 2D one by projecting Vi

on a suitable plane. Based on the analysis of the characteristics
of Vi, we provide two reasons to perform the dimensional
reduction by projection, listed as follows: 1) For a 3D point
sampled by LiDAR, it is distributed on a surface. Hence, for
vertices Vi retrieved from Algorithm 1 that distributed in a
small region (i.e., in a L2-Voxel O2

i), they tend to form a
planar-like point cluster. 2) For these planar-like point clusters,
we can approximately mesh them in a 2D view on their lying
surface. Imagine a 2D ant climbing on 3D surfaces solving
this 3D problem in a 2D view, as shown in Fig. 5.

9

3
D

 m
e

sh
in

g

Fig. 5: In ImMesh, we reduce the 3D meshing problem to a 2D one
by projecting the 3D points onto an estimated surface plane. Imagine
a 2D ant climbing on 3D surfaces solving this 3D problem in a 2D
view.

The plane pn,qq suitable for projection has already been
calculated in our localization module in Section V-A. The
norm n of the plane is the eigenvector u3 that corresponds
to the minimum eigenvalue λ3 in (13), which is the eigende-
composition of point covariance matrix A in voxel O2

i . q is
the center points inside O2

i .
Remark: Even though O2

i might be further divided into
voxel of lower layer by the localization module, the norm
n and q of O2

i is being updated at each new LiDAR frame.
For each vertex Vij P Vi, we project it to plane pn,qq.

The resultant 2D point uij is calculated as:
pij “ rφ, ρs

T
P R2 (16)

φ “
`

PospVij q ´ q
˘T

u1, ρ “
`

PospVij q ´ q
˘T

u2 (17)

where u1,u2 are the other two eigenvectors in (13). We use
Pi “ tpi1 ,pi2 , ...,pimu to denote the 2D point set after
projected from Vi.

2) Two-dimensional Delaunay triangulation: After the pro-
jection, the dimension of 3D meshing problem is reduced to
a 2D one, which can be solved by 2D Delaunay triangulation.

Given a set of 2D point P , the two-dimensional triangula-
tion problem is well known as introduced in [72, 73], which
is to find T of triangular facets s.t.: 1) Any of two facets are
either disjoint or share a lower dimensional face (i.e., edge or
point). 2) The set of facets in T is connected with adjacency
relation. 3) The domain PT , which is the union of facets
in T, has no singularity2. With these three useful properties,
the 2D Delaunay triangulation has been widely applied for
reconstructing dense facets with a given 2D point set (e.g.,
[74]).

As defined in [75, 76], the Delaunay triangulation DelpPq
of a 2D point set P “ tp1,p2, ...,pmu is the geometric dual
of the Voronoi diagram: there is an edge between two points
ui and uj in the Delaunay triangulation if and only if their
Voronoi cell Vpuiq and Vpujq have a non-empty intersection.
DelpPq yields a triangulation of P , which is a partition of the

2The union UT of all simplices in T is called the domain of T . A
point in the domain of T is said to be singular if its surrounding in PT
is neither a topological ball nor a topological disc (view https://doc.cgal.org/
latest/Triangulation 2/index.html of [72] for detail).

convex hull of P into d-dimensional simplices (e.g., triangle
in 2D, tetrahedra in 3D), as shown in Fig. 5.

Remark: The Voronoi cell Vpuiq associated with the point
pi is the region of space that is closer to ui than to all other
points in P :

Vppiq “ tp P Rd : @j ‰ i, ||p´ pi|| ď ||p´ pj ||u (18)

Considering our requirements in Section VI-A, we chose
Delaunay triangulation to reconstruct the mesh for its remark-
able properties as follows. Firstly, it is a 2D triangulation
providing mesh with no hole leaf in the convex hull of P ,
which satisfies our first requirement. Secondly, it naturally
avoids sliver triangles by maximizing the minimum angles
of the triangles in triangulation, which meets our second
requirement. Finally, it is a fast algorithm suitable for real-
time requirements. The algorithm complexity of n points is
Ωpnlogpnqq in 2D (p.s. Ωpn2q in 3D) [77].

Let us use T i “ DelpPiq “ tTi1 ,Ti2 , ...,Tinu to denote
the triangle facets after the Delaunay triangulation DelpPiq.
For each triangle facets Tij P T i, we retrive the indices with
(2): tα, β, γu “ Pts idpTij q, indicating that this triangle
is formed with 2D points tpiα ,piβ ,piγ u. Returning back to
3D space, we constitute a triangle facet Tij with vertices
tViα ,Viβ ,Viγ u, as shown in Fig. 5.

E. Voxel-wise meshing with pull, commit and push

With the triangle facets T i constructed by the voxel-wise
meshing operation, we incrementally merge T i to the existing
triangle facets GT in the map structure. This update is
designed with a mechanism similar to git [70] (a version
control software) that includes pull, commit, and push steps.

1) Pull: Given the vertices Vi obtained from Algorithm 1,
we retrieve the triangle facets T Pull

i from the map structure.
The algorithm of pull step is shown in Algorithm 2.

Algorithm 2: Voxel-wise mesh pull.
Input : The retrieved vertex set Vi from Algorithm 1
Output: The pulled triangle facets T Pull

i

Start : T Pull
i “ tnullu

1 foreach Vj P Vi do
2 Get all vertices related triangle set T Vj “ TripVjq

foreach Tk P T Vj do
3 Get triangle vertex index tα, β, γu “ Pts idpTkq

4 if pVα P Viq and pVβ P Viq and pVγ P Viq then
5 T Pull

i “ T Pull
i YTk

Return: The pulled triangle facets T Pull
i

2) Commit: In this step, we find out the incremental modi-
fications of the reconstructed triangle facets T i (in Section
VI-D2) w.r.t. the pulled facets T Pull

i (from Algorithm 2).
These incremental modifications are summarized into an array
of mesh facets to be added T Add

i and an array of mesh facets
to be erased T Erase

i . The detailed processes of this commit
step are shown in Algorithm 3.

https://doc.cgal.org/latest/Triangulation_2/index.html
https://doc.cgal.org/latest/Triangulation_2/index.html
https://doc.cgal.org/latest/Triangulation_2/index.html
https://doc.cgal.org/latest/Triangulation_2/index.html

10

Algorithm 3: Voxel-wise mesh commit.
Input : The pulled triangle facets T Pull

i from Algorithm 2
The reconstructed triangle facets T i

Output: The triangle facets to be added T Add
i .

The triangle facets to be erased T Erase
i .

Start : T Add
i “ tnullu, T Erase

i “ tnullu
1 foreach Tj P T i do
2 if Tj R T Pull

i then
3 T Add

i “ T Add
i YTj

4 foreach Tj P T Pull
i do

5 if Tj R T i then
6 T Erase

i “ T Erase
i YTj

Return: The triangle facets to be added T Add
i and erased

T Erase
i .

Algorithm 4: Voxel-wise mesh push.
Input : The triangle facets that need to erased T Erase

i .
The triangle facets that need to added T Add

i .
1 Function Add_triangle(Tj):
2 Get point indices tα, β, γu “ IdpTjq

3 Construct triangle TG
j “ Tripα, β, γq in global map.

4 Calculate the center of TG
j :

5 CenterpTG
j q “ pVα `Vβ `Vγq {3

6 Find the L1-Voxel V1 that CenterpTG
j q located in:

V1
“ Get L1 voxelpHashpCenterpTG

jqqq

7 Set the status flag of V1 to Sync-required (Section
IV-D2).

8 Add PtrpTG
j q to triangle list of L1-Voxel V1.

9 Add PtrpTG
j q to triangle list of points Vα, Vβ , Vγ .

10 Function Erase_triangle(Tj):
11 Get point indices tα, β, γu “ IdpTjq

12 Remove PtrpTG
j q in triangle list of points Vα, Vβ , Vγ .

13 Find the L1-Voxel V1 with CenterpTG
j q via (9):

V1
“ Get L1 voxelpHashpCenterpTG

jqqq

14 Set the status flag of V1 to Sync-required (Section
IV-D2).

15 Remove PtrpTG
j q from triangle list of L1-Voxel V1.

16 Delete triangle TG
j from memory.

17 foreach Tj P T Add
i do

18 Add_triangle(Tj)

19 foreach Tj P T Erase
i do

20 Erase_triangle(Tj)

3) Push: With the incremental modification T Erase
i and

T Add
i from the previous commit step, we perform the erasion

and addition operations of global triangle mesh facets respec-
tively. The detailed processes of our push step is shown in
Algorithm 4.

F. Parallelism

To further improve the real-time performance, we imple-
ment our algorithms with parallelism for better utilization of
the computation power of a multi-core CPU. In ImMesh, we
have two major parallelisms as follows:

The first parallelism is implemented between the local-
ization module and the meshing module. Except for the
point cloud registration in localization module, which needs
to operate the mesh vertices as the meshing operation, the
remaining processes of localization module are parallelized

with the meshing module. More specifically, once our meshing
processes start, the localization module is allowed to process
the new coming LiDAR scan for estimation of the pose of
LiDAR. However, the point cloud registration step is only
allowed to be executed after the end of the meshing process.

The second parallelism is implemented among the voxel-
wise meshing operation of each activated voxel. The voxel-
wise meshing operations of different voxels are standalone
thus, no conflicted operations exist on the same set of data.

G. The full meshing algorithm

To sum up, our full meshing processes are shown in
Algorithm 5.

Algorithm 5: The full meshing process of each update
of LiDAR scan

Input : The set of L2-Voxels V2
“ tO2

1,O
2
2, ...,O

2
mu that

activated in Section V-C
Start : The triangle facets that need to added

T Add
“ tnullu, and to be erased in this update

T Erase
“ tnullu.

1 foreach O2
i P V2 do in parallel

2 Retrieve vertices Vi with Algorithm 1.
3 Reconstruct the triangle facets T i with Vi (Section

VI-D2),
4 Performing voxel-wise mesh pull (Algorithm 2) to get

T Pull
i . Ź // Mesh pull

5 Performing voxel-wise mesh commit (Algorithm 3) to
get the triangle facets that need to be added T Add

i and
erased T Erase

i . Ź // Mesh commit
6 T Add

“ T Add
Ť

T Add
i , T Erase

“ T Erase
Ť

T Erase
i

/* === Mesh push start === */
7 foreach Tj P T Add do
8 Add_triangle(Tj) Ź // In Algorithm 4

9 foreach Tj P T Erase do
10 Erase_triangle(Tj) Ź // In Algorithm 4

/* === Mesh push end === */
11 foreach O2

i P V2 do
12 Reset status of O2

i as deactived.
/* Remark 1: Line 1„6 are done in parallel for better

real-time performance (as mentioned in Section
VI-F). */

/* Remark 2: The mesh push step Line 7„10 is
different with the voxel-wise operations in
Algorithm 4. The T Add and T Erase are processed after
the parallelism to avoid possible conflicts when
operating the same data (i.e., triangle facets in
our mapping module) (Line 1„6). */

VII. BROADCASTER

In ImMesh, the broadcaster module publishes our state
estimating results (i.e., odometry) and mapping results (i.e.,
new registered point cloud and triangle mesh) to other ap-
plications. In addition, if the depth image is required, the
broadcaster module will also rasterize the triangle meshes
into a customized depth image (e.g., user-defined resolution
and FoV).

A. Broadcast of odometry

The real-time 6-dof sensor pose from localization module
(Section V-B) is published with the LiDAR frame starting

11

timestamp at a frequency of the LiDAR sampling rate. Besides,
if the IMU source is available, the broadcaster module pub-
lishes the odometry propagated from the IMU preintegration
[78] at the frequency of the IMU sampling rate.

B. Broadcast of triangle facets

Since the triangle facets are stored in an unstructured hash
table of L1-Voxels in map structure, they can not be directly
applied for broadcast. To resolve this problem, our broadcaster
module maintains a background thread that asynchronously
copies the triangle facets from the hash table of each sync-
required L1-Voxels (set as sync-required in Algorithm 4) to
a structured array for broadcasting. Then, these sync-required
voxels are marked as synced after the copying. Finally, The
broadcaster module publishes the refreshed triangle facets to
other applications.

C. Rasterization of depth image

Some robotic applications, such as autonomous navigation
[79] and exploration [80] tasks, require dense accurate depth
images for obstacle avoidance. To meet the requirements of
these scenarios, the broadcaster module utilizes the triangle
facets from Section VII-B to rasterize a depth image at any
customized resolution and FoV, based on the fast implemen-
tation of OpenGL [67].

1) Reinforcement of LiDAR point cloud: With the depth
image from rasterization, LiDAR point cloud reinforcement is
enabled by unprojecting the 3D points from the depth image.
In detail, with the projection matrix and estimated pose used
for rasterizing the depth image, the 3D points are obtained (i.e.,
unproject) w.r.t. each depth value on the depth image. As a
result, the 3D point cloud is enhanced with higher resolution
and larger FoV than the raw LiDAR measurement scan (see
our Application-1 in Section VIII-D).

VIII. EXPERIMENTS AND RESULTS

In this section, we extensively evaluate the performance of
ImMesh. Notice that our localization module is built upon our
previous work VoxelMap [16] with no modification that rela-
tive to the state estimation. Hence, the localization precision
of this work performs as well as [16]. We recommend our
readers get more details about our localization accuracy by
referring to the results reported in our previous work.

In this paper, we lead the experiments by evaluating our
meshing ability, especially on the runtime performance and
accuracy in reconstructing the triangle mesh.

A. Experiment-1: ImMesh for immediate mesh reconstruction

In this experiment, we verify the overall performance of
ImMesh toward real-time simultaneous localization and mesh-
ing with live video demonstrations. As shown in Fig. 6(b),
we record the full process of our data sampling at the cam-
pus of the University of Hong Kong (HKU), deploying the
ImMesh for simultaneously estimating the sensor pose and
reconstructing the triangle mesh on the fly. The full video
demonstration of this experiment is available on YouTube:
youtu.be/pzT2fMwz428?t=9.

Fig. 6: (a) shows our handheld device for data collection and online
mesh reconstruction. (b) shows a snapshot of our accompanying video
(on YouTube: youtu.be/pzT2fMwz428?t=9) of Experiment-1,
with three time-aligned views of different sources including a screen-
recorded view (in red), a camera preview (in yellow), and a third-
person view (in blue).

1) Experiment setup: Our handheld device for data collec-
tion is shown in Fig. 6(a), which includes a mini-computer
(equipped with an Intel i9-10900 CPU and 64 GB RAM),
a Livox avia 3D LiDAR (FoV: 70.4 °ˆ77.2°), and a preview
only RGB camera. In this experiment video, three time-aligned
views of different sources are presented, including: 1) a screen-
recorded view that shows the estimated posed and online
reconstructed triangles mesh of ImMesh. 2) a camera preview
that records the video stream of the front-facing camera. 3)
a third-person view that records the whole process of this
experiment.

2) Result and analysis: As presented in the video, benefits
from the accurate uncertainty models of the LiDAR point and
plane that counting both LiDAR measurement noise and sensor
pose estimation errors in our localization module, ImMesh
is able to provide the 6-DoF pose estimation of very high
accuracy in real-time. What is worth mentioning is, without
any additional processing (i.e., loop detection), all of these
two trials can close the loop itself after traveling 957 m
and 391 m. In addition, with the efficient architecture design
and our careful engineering implementation on our meshing
module, the triangle mesh of the surrounding environment is
incrementally reconstructed on the fly. With the live preview
of real-time meshing as a reference, it is quite useful to let
users know whether the data sampling is sufficient enough for
any part of the scene, especially for those non-expert users. At
the end of the data sampling, the dense accurate triangle mesh
of this scene is already reconstructed. This is why we name
our system the Immediately Meshing (ImMesh) framework.

B. Experiment-2: Extensive evaluation of ImMesh on public
datasets with various types of LiDAR in different scenes

With all the modules delicately designed for efficiency and
careful engineering implementations, both the localization and
meshing modules easily achieve real-time performances on a
standard multi-core CPU. In this experiment, we statics the
average time consumption on four public datasets with the
computation platform listed in Section VIII-A1.

The four datasets we chose are: the Kitti dataset [81],
the NCTL dataset [82], the NTU VIRAL dataset [83] and
the R3LIVE dataset [22]. They are collected in different
scenarios ranging from urban structured buildings to field-
cluttered complex environments (see Table II), using various
types of LiDARs that include mechanical spinning LiDAR

https://youtu.be/pzT2fMwz428?t=9
https://youtu.be/pzT2fMwz428?t=9

12

TABLE I: The specifications of LiDARs in four datasets

Dataset Kitti NCLT NTU VIRAL R3LIVE

LiDAR

Velodyne HDL-64E Velodyne HDL-32E Ouster OS1-16 Gen1 Livox Avia
Scanning

mechanism
Mechanical,

spinning 64-line
Mechanical,

spinning 32-line
Mechanical,

spinning 16-line
Solid-state,

Risley’s prism
Field of View

(Horizontal˝ ˆ Vertical˝) 360.0˝ ˆ 26.8˝ 360.0˝ ˆ 41.3˝ 360.0˝ ˆ 33.2˝ 70.4˝ ˆ 77.2˝

Points per secondr1s 1,333,312 695,000 327,680 240,000

Price $ 75,000 $ 8,800 $ 3,500 $ 1,599
1 Only show the point rate of single-return mode.

TABLE II: This table shows the detailed information (e.g., length, duration, scenarios) of each testing sequence, the time consumption of
ImMesh in processing a LiDAR scan, and the number of vertices and facets of each reconstructed mesh in Experiment-2.

Sequece Traveling
length (m)

Durations
(s)

LiDAR
frames

Meshing
mean/Std (ms)

Localization
mean/Std (ms)

Number of
vertices (k)

Number of
facets(k) Scenarios

Kitti 00 3,724.2 456 4,541 32.1 / 12.0 49.0 / 11.7 3,339.4 7,692.7 Urban city
Kitti 01 2,453.2 146 1,101 34.5 / 10.5 51.1 / 18.5 2,033.0 4,046.8 High way
Kitti 02 5,058.9 509 4,661 33.5 / 7.0 36.2 / 9.5 4,390.3 10,028.1 Residential
Kitti 03 560.9 88 801 28 / 7.1 49.0 / 12.2 730.0 1,550.8 Countryside; Road
Kitti 04 393.6 27 271 30.1 / 9.4 42.4 / 12.9 411.7 850.6 Urban city; Road
Kitti 05 2,205.6 303 2,761 29.6 / 8.2 38.7 / 11.5 2,167.4 4,950.3 Residential
Kitti 06 1,232.9 123 1,101 23.1 / 5.6 56.9 / 9.7 886.1 1,889.4 Urban city
Kitti 07 2,453.2 114 1,101 20.7 / 7.4 31.3 / 8.6 764.4 1,710.5 Urban city
Kitti 08 3,222.8 441 4,071 32.4 / 7.8 45.7 / 17.7 3,559.1 7,936.3 Urban city
Kitti 09 1,705.1 171 1,591 34.5 / 7.5 43.1 / 19.2 1,827.4 4,127.5 Countryside; Road
Kitti 10 919.5 132 1,201 23.4 / 6.9 30.9 / 11.9 939.6 2,096.5 Residential

NCLT 2012-01-15 7,499.8 6739 66,889 26.3 / 14.1 21.3 / 9.8 9,659.7 26,608.3 Campus; Indoor
NCLT 2012-04-29 3,183.1 2598 25,819 25.4 / 13.9 19.1 / 5.4 4,820.9 13,483.9 Campus
NCLT 2012-06-15 4,085.9 3310 32,954 24.5 / 14.4 22.3 / 7.7 6,361.0 17,473.5 Campus
NCLT 2013-01-10 1,132.3 1024 10,212 20.2 / 12.5 19.3 / 6.5 2,020.6 5,495.8 Campus
NCLT 2013-04-05 4,523.6 4167 41,651 20.6 / 13.8 26.8 / 11.7 9,582.3 23,982.4 Campus

NTU VIRAL eee 01 265.3 398 3,987 11.2 / 6.7 14.5 / 3.4 597.6 1,380.3 Aerial; Outdoor
NTU VIRAL nya 01 200.6 396 3,949 9.4 / 5.3 10.2 / 1.7 536.8 1,247.6 Aerial; Indoor
NTU VIRAL rtp 01 449.6 482 4,615 12.1 / 8.5 10.9 / 2.6 719.2 2,030.5 Aerial; Outdoor
NTU VIRAL sbs 01 222.1 354 3,542 11.4 / 8.0 17.2 / 3.2 472.5 1,150.4 Aerial; Outdoor
NTU VIRAL tnp 01 319.4 583 5,795 6.3 / 3.7 8.8 / 1.2 155.5 414.0 Aerial; Indoor

R3LIVE hku campus 00 190.6 202 2,022 12.0 / 7.3 11.5 / 3.2 587.1 1,236.9 Campus
R3LIVE hku campus 01 374.6 304 3,043 20.4 / 12.6 17.2 / 6.9 1,323.4 2,862.9 Campus
R3LIVE hku campus 02 354.3 323 3,236 13.5 / 6.4 11.9 / 2.8 867.9 1,913.6 Campus
R3LIVE hku campus 03 181.2 173 1,737 12.2 / 5.7 11.3 / 2.9 550.0 1,130.6 Campus

R3LIVE hku main building 1,036.9 1170 11,703 16.9 / 14.3 12.5 / 8.0 3,031.2 6,803.6 Indoor; Outdoor
R3LIVE hku park 00 247.3 228 2,285 30.1 / 15.9 12.6 / 3.7 919.5 2,380.2 Cluttered field
R3LIVE hku park 01 401.8 351 3,520 31.5 / 12.2 12.6 / 3.9 1,673.0 3,964.8 Cluttered field

R3LIVE hkust campus 00 1,317.2 1073 10,732 26.0 / 12.8 18.0 / 7.6 4,916.7 11,246.8 Campus
R3LIVE hkust campus 01 1,524.3 1162 11,629 27.1 / 13.9 16.8 / 6.7 5,353.1 12,638.1 Campus
R3LIVE hkust campus 02 2,112.2 1618 4,787 26.7 / 14.5 20.3 / 6.1 1,991.6 4,653.5 Campus
R3LIVE hkust campus 03 503.8 478 16,181 33.6 / 13.3 21.0 / 5.3 7,673.8 18,247.3 Campus

TABLE III: Two ImMesh configurations for two types of LiDARs
(i.e., mechanical and solid-state LiDAR).

Minimum point L1-voxel O1 L2-voxel O2

distance (m) size (m) size (m)
Mechanical LiDAR 0.15 15.0 0.60
Solid-state LiDAR 0.10 10.0 0.40

TABLE IV: The average/maximum time of meshing and localization
module for processing each LiDAR scan in four datasets.

Kitti NCLT NTU VIRAL R3LIVE
mean/max mean/max mean/max mean/max

Meshing (ms) 31.3 / 34.5 24.2 / 25.4 9.8 / 17.2 25.3 / 33.6
Localization (ms) 42.2 / 56.9 22.3 / 26.8 11.9 / 17.2 16.6 / 21.0

of different channels and solid-state LiDAR of small FoV
(see the specifications in Table I). Hence, the adaptability of
ImMesh is sufficiently validated by extensive tests on these
four distinguished datasets.

1) Experiment setup: Thanks to the parameter insensitivity
of ImMesh, we are able to benchmark ImMesh in four datasets
with only two sets of configurations. The two configurations
are reasonably required for adapting two classes of LiDARs
(i.e., mechanical and solid-state LiDAR), as shown in Table III.
Since the 3D points sampled by a solid-state LiDAR are
distributed in a small sensor FoV, the accumulated point cloud
of solid-state LiDAR usually has a higher density. Therefore,
we set the minimum point distance and voxel size for solid-

13

Fig. 7: In Experiment-3, we use CAD software to design a solid model to generate a ground truth triangle mesh as a reference, which
contains four zones simulating different scenarios, as the white entity shown in this figure. To simulate the data collecting process with
different vehicles, we generate the LiDAR point cloud data by traveling along three distinguished trajectories, whose sampling poses are
colored in different colors (i.e., red, yellow, and blue).

state LiDAR 1.5 times smaller than those for mechanical
LiDAR, as shown in Table III. For the other setups, we
maintained the same configuration except for some necessary
adjustments to match the hardware setup.

2) Result and analysis: Table II shows the detailed infor-
mation (e.g., length, duration, scene) of each sequence, the
average time consumption of our localization and meshing
module in processing a LiDAR scan, and the number vertices
and facets of each reconstructed mesh. From Table II, it
is seen that the average cost-time of both localization and
meshing modules are closely related to the density of the
input LiDAR scan. To be detailed, the LiDAR of a higher
channel has a much higher point sampling rate (see Table I)
which causes more data to be processed in each update of a
LiDAR frame (e.g., more points in a voxel and more voxels
activated in each frame). Besides, for the same set of datasets,
the processing time also varies among different scenarios. The
sequences sampled in a high-way or field environment (e.g.,
Kitti 01, Kitti 09) usually have a longer LiDAR sampling
range and hence leading to more points per frame to be
processed. Thanks to the efficient data structure (e.g., ikd-Tree,

hashed hierarchical voxel) and parallelism strategy, which
allows us to perform the state estimation and incremental mesh
reconstruction simultaneously, the time consumption of large-
scale datasets is bounded in an acceptable value (ď35 ms for
meshing, ď49 ms for localization).

The average and maximum time consumption of ImMesh in
four datasets are shown in Table IV, reflecting that our system
satisfies the real-time requirement even with different types
of LiDAR and in various scenarios. Notice that the LiDAR
sample rate are 10 Hz for all datasets, and our meshing and
localization are run in parallel (see Section VI-F).

C. Experiment-3: Quantitative evaluation of meshing accu-
racy

In this experiment, we horizontally evaluate the runtime
performance and meshing accuracy of ImMesh by comparing
it with existing state-of-the-art mesh reconstruction methods.

14

Fig. 8: This figure shows the qualitative results of Experiment-3, with all “positive” facets (correctly reconstructed) colored in white and
“negative” facets (wrongly reconstructed) colored in red. (a) and (b) present a set of qualitative results of four candidates under Trajectory-
3@640ˆ 480. (c) shows the reconstructed mesh of TSDF feeding with depth images of different resolutions.

TABLE V: The average time consumption of candidates in reconstructing the triangle mesh in Experiment-3.

Time consumption (Unit: second(s))

Method Trajectory-1
@640x480

Trajectory-1
@320x240

Trajectory-1
@160x120

Trajectory-2
@640x480

Trajectory-2
@320x240

Trajectory-2
@160x120

Trajectory-3
@640x480

Trajectory-3
@320x240

Trajectory-3
@160x120

ImMesh (ours) 6.877 6.451 5.522 15.649 14.066 13.206 24.536 18.617 15.055
Del 371.632 132.181 30.366 696.641 353.304 56.765 960.613 323.224 85.008

TSDF 6.064 5.522 5.513 16.191 16.146 16.028 20.544 20.391 20.309
Poi 141.848 78.605 29.610 635.079 198.028 45.280 957.743 310.080 137.976

TABLE VI: The meshing accuracy of four candidates evaluated with Criteria-1 in Experiment-3.

Criteria-1:Meshing precision

∣∣∣∣∣∣
in Zone-A / in Zone-B
in Zone-C / in Zone-D
in all zones (average)

∣∣∣∣∣∣ (Unit: percentage(%))

Method Trajectory-1
@640x480

Trajectory-1
@320x240

Trajectory-1
@160x120

Trajectory-2
@640x480

Trajectory-2
@320x240

Trajectory-2
@160x120

Trajectory-3
@640x480

Trajectory-3
@320x240

Trajectory-3
@160x120

ImMesh
(ours)

99.96 / 99.43
98.06 / 98.98

99.01

99.72 / 97.93
96.06 / 97.15

97.48

98.65 / 93.82
91.47 / 92.50

93.47

99.60 / 99.48
98.38 / 99.49

99.20

98.91 / 98.76
96.51 / 98.09

98.09

95.98 / 96.27
90.58 / 94.07

94.29

98.97 / 98.97
98.00 / 99.05

98.72

96.30 / 96.33
95.24 / 97.53

96.31

85.21 / 82.84
84.88 / 89.59

85.53

Del
97.62 / 97.38
92.95 / 97.54

96.39

98.38 / 98.98
96.20 / 98.86

98.15

97.04 / 97.56
95.09 / 97.68

96.90

98.49 / 99.27
94.39 / 99.09

97.83

98.24 / 99.24
95.31 / 98.96

98.03

97.49 / 98.38
93.94 / 98.14

97.16

96.28 / 97.27
94.30 / 98.14

96.47

94.20 / 94.77
92.75 / 96.31

94.49

92.41 / 91.61
93.60 / 96.59

93.47

TSDF
98.93 / 99.88
93.38 / 99.10

97.56

99.83 / 97.57
92.78 / 96.30

96.35

94.18 / 90.42
74.31 / 80.64

83.55

97.96 / 99.53
90.53 / 98.13

96.21

96.30 / 96.48
86.02 / 96.24

93.36

92.60 / 84.98
75.82 / 87.48

84.97

99.54 / 99.62
92.74 / 99.43

97.67

99.12 / 99.11
96.60 / 99.21

98.43

85.88 / 85.45
83.08 / 89.48

85.76

Poi
96.95 / 97.07
91.14 / 92.11

93.62

97.04 / 97.30
91.02 / 92.30

93.67

97.27 / 96.92
88.43 / 91.87

92.38

96.13 / 97.00
92.27 / 92.00

94.10

96.31 / 97.10
91.70 / 91.26

94.25

95.77 / 96.90
91.83 / 92.25

94.35

95.86 / 96.94
91.72 / 92.44

94.25

95.78 / 96.23
91.91 / 92.23

93.98

89.13 / 84.11
86.43 / 89.06

87.06

1) Prepare of simulated data: Since the ground truth trian-
gle mesh of the real-world data can not be directly obtained,
we use CAD software SolidWorks [14] to design a ground truth
solid model for reference, as shown in Fig. 7. This solid model
we made is constituted of four distinguished zones for an
extensive evaluation of the meshing results in different scenes,
which include the simple planar zone (Zone-A), simple curvy
(bending) zone (Zone-B), complex planar zone (Zone-C), and
complex curvy Zone (Zone-D). Each zone has an equal size
of lengthˆwidthˆheight as 10.0 mˆ10.0 mˆ6.5 m.

To simulate point clouds collected by a real LiDAR, we

built a simulator to unproject the “LiDAR” points from the
depth images generated from the rasterization of the ground
truth models with given poses. In this experiment, we ras-
terized the depth image with a pinhole projection model of
horizontalˆvertical FoV as 80˝ ˆ 60˝. Besides, to simulate
the LiDAR of different point cloud densities, we rasterized
the depth image with three sets of resolutions (see Table V)
including 640 ˆ 480, 320 ˆ 240, and 160 ˆ 120. Finally, we
designed three distinguished sampling trajectories as shown in
Fig. 7. Each trajectory contained a number of manually placed
poses for simulating different vehicles in collecting the data.

15

0 5 10 15 20 25
0

5

10

15

20

25

30 Trajectory-1@640X480

0 10 20 30 40 50 60 70 80
0

10

20

30

40
Trajectory-2@640X480

0 20 40 60 80 100
0

5

10

15

20

25 Trajectory-3@640X480

0 5 10 15 20 25
0

10

20

30

40

50 Trajectory-1@320X240

0 10 20 30 40 50 60 70 80
0

10

20

30

40 Trajectory-2@320X240

0 20 40 60 80 100

5

10

15

20

25 Trajectory-3@320X240

0 5 10 15 20 25
Index of sampling poses

 of Trajectory-1

0

20

40

60

80 Trajectory-1@160X120

0 10 20 30 40 50 60 70 80
Index of sampling poses

 of Trajectory-2

0

20

40

60

Trajectory-2@160X120

0 20 40 60 80 100
Index of sampling poses

 of Trajectory-3

5

10

15

20

25

30 Trajectory-3@160X120

Av
er

ag
e

de
pt

h
er

ro
r (

cm
) i

n
ea

ch
 fr

am
e

TSDF Del Poi ImMesh (Ours)

Fig. 10: Re-rendering depth error in each frame of four candidates in Experiment-3.

TABLE VII: The meshing accuracy of four candidates evaluated by Criteria-2 in Experiment-3.

Criteria-2: Re-rendering depth error (Unit: centimeter (cm))

Method Trajectory-1
@640x480

Trajectory-1
@320x240

Trajectory-1
@160x120

Trajectory-2
@640x480

Trajectory-2
@320x240

Trajectory-2
@160x120

Trajectory-3
@640x480

Trajectory-3
@320x240

Trajectory-3
@160x120

ImMesh (ours) 2.146 3.678 6.67 1.686 3.115 5.838 2.076 3.943 7.592
Del 2.216 3.37 6.176 1.832 2.807 5.358 1.674 3.205 6.327

TSDF 5.068 15.643 30.421 4.231 5.652 19.352 3.724 9.167 17.288
Poi 9.844 9.611 10.594 6.546 6.377 10.466 8.21 8.848 12.142

The details of these three trajectories are shown below:
‚ The trajectory-1 (in red) contains 28 sampling poses,

simulating the LiDAR mounted on a car with a height of 1.5 m
away from the ground (i.e., z “ 0 plane). The LiDAR data is
collected by moving from Zone-A to Zone-D.
‚ The trajectory-2 (in yellow) contains 81 sampling poses.

It simulates a handheld LiDAR collecting data at the height
fixed as 1.5 m. The LiDAR data is collected by traveling in
an “8”-like pattern which sufficiently captures the model’s
surface from different views.
‚ The trajectory-3 (in blue) contains 102 sampling poses,

imitating a LiDAR mounted on a drone flying at the height
of 8.5 m. The LiDAR data is collected from a tilted bird view
by flying in an “S”-like pattern.

Due to the limitation of height in sampling the data, LiDAR
in trajectory-1 and trajectory-2 did not capture the ceiling sur-
face of the model. Conversely, LiDAR in trajectory-3 captured
the ceiling surfaces but failed to capture the bottom surfaces
of the models. Besides, LiDAR in trajectory-1 traveled in one
direction; hence only the surfaces facing against the positive
Y -axis were captured.

2) Experiment setup: In this experiment, we conducted a
fair evaluation of meshing ability among our work and existing
mesh reconstruction baselines, which includes a TSDF-based

method implemented by Point cloud library (PCL) [53] with
GPU acceleration, Delaunay triangulation and graph cut based
method implemented by OpenMVS [84], and the official
implementation of Poisson surface reconstruction [23, 24].

We conducted the evaluation of candidates on a desktop
PC that equips with an Intel i7-9700K CPU, 64Gb RAM,
and a Nvidia 2080 Ti GPU with 12Gb graphics memory.
We feed our ImMesh and TSDF-based (TSDF) method with
LiDAR points frame by frame. To avoid the pose estimation
error that affects the result of meshing, we disable the pose
estimation module and feed ImMesh and TSDF with the
ground truth poses. For offline mesh reconstruction methods:
Delaunay triangulation and graph cut (Del) based method and
Poisson surface reconstruction (Poi), we feed them with the
accumulated point cloud of all frames. To avoid the uneven
point cloud density which leads to errors in calculating the
norm for Poi, and to avoid Del reconstructing the tiny facets
that lead to a biased calculation of accuracy, we leverage a
voxel grid filter with a leaf size of 1.0 cmˆ 1.0 cmˆ 1.0 cm
to downsample the accumulated point cloud before feeding to
Poi and Del.

Due to and limitation of graphics memory (12Gb for Nvidia
2080 Ti), we set the TSDF cell size as 0.2 m such that TSDF
can utilize the GPU acceleration while preserving satisfying

16

Fig. 11: The first row of images shows the comparisons between a raw LiDAR scan (colored in white) and our reinforced points (colored
in cyan) under different sets of rasterizing FoV. The second and third rows of images show the comparisons of raw and reinforced points
after projection on the current sensor frame. For more detailed visualizations of this process, please refer to our accompanying video on
YouTube: youtu.be/pzT2fMwz428?t=499.

precision in the mesh reconstruction. For our ImMesh, the
parameter configuration for solid-state LiDAR is used, as
shown in Table III. For Poi, we set the octree level as 12 and
removed large hulls by deleting facets with one of their edges
longer than 15.0 cm. For other configurations of all candidates,
we set them as their default configuration.

In this experiment, we horizontally evaluated the meshing
accuracy of candidates by comparing their reconstructed mesh
with the ground truth models. A set of qualitative results of
four candidates under Trajectory-3@640 ˆ 480 are shown in
Fig. 8(a and b). To sufficiently and fairly calculate the accuracy
by comparing the mesh of the candidate’s and ground truth,
two criteria are adopted for counting the difference, shown
below:
‚ Criteria-1: For a triangle facet Tcan

i of a candidate’s
reconstructed mesh, we first find out a triangle facet Tgt

j of
the ground truth model, whose point-to-plane distance from
this facet to the center of Tcan

i is minimum.Tcan
i is regarded

as “positive” if it satisfies both of the following conditions: 1)
The point-to-plane distance between Tgt

i and CenterpTcan
i q

smaller than 5.0 cm; 2) The angular distance between the norm
vector of Tcan

i and the norm vector of Tgt
j smaller than 15˝.

Otherwise, this triangle facet Tcan
i is treated as “negative”.

The ratios of “positive” over the total number of facets in each
zone (and the entire simulated scene) served as Criteria-1 for
evaluating the meshing accuracy, as the results are shown in
Table VI.
‚ Criteria-2: For each candidate’s reconstructed mesh, it is

rasterized into a depth image in the same way as rasterizing
the ground truth model to a depth image (for generating
the simulation data, see Section VIII-C1). The average depth
error of each pixel depth value is calculated between each
depth image pair of the candidate and ground truth (i.e.,

re-rendering error), serving as Criteria-2 for evaluating the
meshing accuracy, with the results shown in Figure. 10 and
Table VII.

While Criteria-1 reflects the correctness of candidates in
reconstructing the mesh and reflects different performances in
different zones, it is unable to count the holes of the mesh.
On the contrary, Criteria-2 reflects the errors caused by holes
but can not count the facets out of view (e.g., the facets
hide behind other facets). Referring to the results calculated
according to Criteria-1 (i.e., Table VI) and Criteria-2 (i.e.,
Figure. 10 and Table VII), we conducted the evaluation and
analysis on the meshing accuracy of four candidates.

3) Results and analysis of runtime performance: The aver-
age time consumption of four candidates is listed in Table V.
The online methods ImMesh and TSDF show a comparative
runtime performance, while the offline methods Del and Poi
consume about two orders of magnitude larger than the online
methods. Notice that TSDF achieves the comparative runtime
performance as ours with the acceleration of an Nivdia 2080
Ti GPU, which indicates the highest computation efficiency of
our ImMesh among the four candidates.

4) Result and analysis of meshing accuracy: The results
evaluated by Criteria-1 are shown in Table VI. All candidates
show satisfying accuracy in reconstructing the mesh of the
simple planar models in Zone-A, followed by the simple
curvy model in Zone-B. In complex scenes, all candidates
show lower accuracy and achieve worse results in Zone-C,
where many square cylinders cross each other, making it hard
to reconstruct well. In addition, as the point cloud (i.e., the
resolution of depth images) becomes sparser, the accuracy
drops responsibly, especially for TSDF-based method. Lastly,
Poi shows a bad accuracy in complex scenes due to the
unwanted facets appearing at the sharp edge of the models,

https://youtu.be/pzT2fMwz428?t=499

17

as the facets colored in red shown in Fig. 8(b4 and c4).
The results evaluated by Criteria-2 are shown in Figure. 10

and Table VII. Del achieves the best precision by showing the
lowest depth error. Our proposed algorithm ImMesh performs
closely to Del, followed by Poi and TSDF. As the graphs
shown in each column of Figure. 10, the average depth error of
the TSDF increases sharply as the resolution of depth images
goes down, due to the appearance of the holes on the mesh
(as shown in Fig. 8(c)). This unwanted phenomenon that uses
TSDF-based methods for constructing mesh with depth image
of low resolution is also reported in other work [59].

5) Summary: We lead the conclusions of Experiment-3
based on the results and analysis discussed in Section VIII-C3
and Section VIII-C4: For offline applications, which only care
about quality and neglect time consumption, Del is the best
choice, and our ImMesh is the second best one. Poi shows
satisfying results in simple scenes, but it is incapable of
reconstructing complex scenes with many sharp edges. For
real-time applications, our work ImMesh is the best choice.
Even though TSDF with GPU implementation can meet the
runtime requirement of real-time scenarios, its performance is
unsatisfying due to the low meshing accuracy compared to
ImMesh.

D. Application-1: ImMesh for LiDAR point cloud reinforce-
ment

Benefiting from ImMesh’s real-time ability to reconstruct
the triangle mesh on the fly, depth images can be rasterized
from the reconstructed facets online in the current sensor
frame. By unprojecting the 3D points from the depth image,
point clouds of a regular pattern can be retrieved with wider
FoV and denser distribution compared to the original input
LiDAR scan. We termed this process as LiDAR point rein-
forcement.

In this experiment, we demonstrate the LiDAR point cloud
reinforcement with a solid-state LiDAR Livox Avia with FoV
of 70.4˝ˆ77.2˝. The comparisons between the original points
of a LiDAR frame (colored in white) and after our reinforce-
ment (colored in cyan) with different sets of rasterization FoV
are shown in Fig. 11. As the white points shown in the first row
of Fig. 11, the input LiDAR scan is sparse with an irregular
scanning pattern. After the reinforcement, the resultant 3D
points colored in cyan are distributed in a regular pattern,
with denser density and wider FoV (as the rasterization FoV
is bigger than LiDAR’s). To have a better sense of their
differences, we present the comparisons of depth images after
projection, as shown in the second and third rows of Fig. 11.

In this manner, the LiDAR points after reinforcement can
benefit the applications in these scenarios: 1) the reinforced
points of denser density and wider FoV enable navigation
algorithms to achieve better planning performance and make
smarter decisions. 2) it provides unified point cloud outputs
neglecting scanning patterns of different LiDARs. Compared
to the use of original LiDAR points with specific scanning
patterns, using these points of regular patterns potentially
benefits learning-based algorithms for better generalization.

E. Application-2: ImMesh for rapid, lossless texture recon-
struction

In this application, we show how ImMesh can be applied
in applications of losslessly texture reconstruction for rapid
field surveying. As shown in Fig. 12(b1„b3), we mounted
a Livox avia LiDAR and a Hikvision CA-050-11UC global
shutter RGB camera on a DJI M300 drone platform.

We collected the data in a mountain field by taking off
from Zone-A (see Fig. 12(a)), and flying in a “s”-like pattern
trajectory with a traveling distance of 975 m. We leveraged
ImMesh for reconstructing the mesh from collected LiDAR
data and used R3LIVE++ [21, 22] for estimating the camera’s
poses (as the yellow frustum shown in Fig. 12(a, c1 and
c2)). We textured each facet of the reconstructed mesh by the
RGB image captured by the nearest camera with the estimated
camera pose from R3LIVE++. Benefit from the high efficiency
of ImMesh and R3LIVE++, the total time of reconstructing the
RGB textured mesh from this sequence of duration 325 s cost
only 686 s, with 328 s for ImMesh, with 330 s for R3LIVE++
and 28 s for texturing. Fig. 12(a) shows a bird view of our
mesh after texturing, with the close-up views of textured mesh
in Zone-A, B, and C are shown in Fig. 12(e1, e2, and e3),
respectively. In Fig. 12(c1 and c2), we show the altitude of
this map by coloring the facets in their height w.r.t. the take-off
point (i.e., the ground plane in Zone-A).

As the close-up views shown in the bottom three rows of
Fig. 12, the reconstructed mesh (d1„d3) from our ImMesh
after texturing (e1„e3) successfully preserves the textures of
maps when comparing with the RGB colored point cloud
reconstructed by R3LIVE++ (f1„f3). Since the density of
the point cloud is not infinite, R3LIVE++ is unable to loss-
lessly reconstruct the scene’s radiance by storing radiance
information in points with limited density. On the contrary,
reconstructing the maps with mesh reconstructed by ImMesh,
and texturing the facets with collected images and the camera
poses of R3LIVE++. The raw color images photoed by the
camera are losslessly preserved on the facets of the mesh.
Hence this is a lossless manner for reconstructing the texture
of the scene. Compared to existing counterparts (e.g., structure
from motion (SFM) [12, 30]), this manner shows significant
advantages on: 1) It is a reliable solution that does not require
GPS measurement. 2) It is a rapid reconstruction method that
costs just 2„3 times of data sampling time for reconstructing a
scene. 3) It is a lossless texture reconstruction method, while
preserving geometry structure of very high accuracy that is
constructed from LiDAR’s measurement.

The accompanying video that records the full process of this
lossless texture reconstruction is available on our YouTube:
youtu.be/pzT2fMwz428?t=622, and an additional trial
is shown in our Supplementary Material3.

IX. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work, we proposed a novel meshing framework
termed ImMesh for achieving the goal of simultaneous local-

3https://github.com/hku-mars/ImMesh/blob/main/supply/Supplementary
material.pdf

https://youtu.be/pzT2fMwz428?t=622
https://github.com/hku-mars/ImMesh/blob/main/supply/Supplementary_material.pdf
https://github.com/hku-mars/ImMesh/blob/main/supply/Supplementary_material.pdf

18

Fig. 12: (b1„b3) show our UAV platform for data collection. (a) show the bird view of our lossless texture reconstruction result. (c1 and c2)
show the altitude of this map by coloring the facets in their height w.r.t. the take-off point (i.e., the ground plane in Zone-A). The qualitative
comparison of mapping results in Zone-A, B, and C of ImMesh, ImMesh after textured, and R3LIVE are shown in (d„f). To see the detailed
reconstruction process of the scene, please refer to our video on YouTube: youtu.be/pzT2fMwz428?t=622.

ization and meshing framework in real-time. To the best of our
knowledge, it is the first work in literature to reconstruct the
triangle mesh of a large-scale scene in an incremental manner
in real-time. In ImMesh, the localization module represents
the surrounding environment in a probabilistic representation,
estimating the sensor pose in real-time by leveraging an
iterated Kalman filter to maximize a posterior. The meshing
module directly utilizes the registered LiDAR point as mesh
vertices, real-time reconstructing the triangle facets in a novel
incremental manner. To be detailed, our meshing module first
utilizes an efficient hierarchical voxel data structure for fast
finding of voxels containing newly appended vertices. Then,
the voxel-wise 3D meshing problem is converted into a 2D
one by performing dimension reduction. Finally, the triangle
facets are incrementally reconstructed with pull, commit, and
push steps.

In our experiments, we first verified the overall performance
by presenting live video demonstrations of how the mesh
is immediately reconstructed in the process of data collec-
tion. Then we extensively tested ImMesh with four public
datasets collected by four distinguished LiDAR in various
scenes, which confirmed the real-time ability in all sequences
we evaluated. Lastly, we horizontally evaluated the meshing
performance of ImMesh in Experiment-3 by comparing it
against existing meshing baselines. The results show that
ImMesh achieves high meshing accuracy while keeping the
best runtime performance among all candidates.

In our applications, we first show how ImMesh can be
applied for LiDAR point cloud reinforcement, which generates
reinforced points in a regular pattern with denser density and
wider FoV compared to raw LiDAR scan. In Application-2,
we combined our works ImMesh and R3LIVE++ to achieve

https://youtu.be/pzT2fMwz428?t=622

19

the goal of losslessly texture reconstruction of scenes. Finally,
to share our findings and make contributions to the commu-
nity, we make our code publicly available on our GitHub:
github.com/hku-mars/ImMesh.

B. Future work

In ImMesh, we propose a novel framework that can simul-
taneously localization and meshing in real-time. Further, to
realize the goal of lossless texture reconstruction of scenes, our
current solution is combining ImMesh and R3LIVE at a system
level as presented in our Application-2 (in Section VIII-E),
which is indeed a solution but not the elegant one. Hence, our
future work would trend to make ImMesh and R3LIVE work
in a more tightly combined style. Besides, since our system
does not implement any loop correction yet, it drifts gradually
due to accumulated localization errors. Our future work will
integrate our recent works [85, 86] on loop detection based
on LiDAR point cloud, which is able to online detecting the
possible loop and then reduce the drift by leveraging the loop
correction.

X. ACKNOWLEDGEMENTS

The authors would like to thank DJI Co., Ltd4 for providing
devices and research found.

REFERENCES

[1] S. Mystakidis, “Metaverse,” Encyclopedia, vol. 2, no. 1, pp. 486–497,
2022.

[2] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A survey on metaverse: Fundamentals, security, and privacy,” IEEE
Communications Surveys & Tutorials, 2022.

[3] P. Cipresso, I. A. C. Giglioli, M. A. Raya, and G. Riva, “The past,
present, and future of virtual and augmented reality research: a network
and cluster analysis of the literature,” Frontiers in psychology, p. 2086,
2018.

[4] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and service
robotics. Springer, 2018, pp. 621–635.

[5] S. Laine and T. Karras, “High-performance software rasterization on
gpus,” in Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, 2011, pp. 79–88.

[6] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering.
AK Peters/crc Press, 2019.

[7] J. Arvo, Graphics gems II. Elsevier, 2013.
[8] P. Jiménez, F. Thomas, and C. Torras, “3d collision detection: a survey,”

Computers & Graphics, vol. 25, no. 2, pp. 269–285, 2001.
[9] C. Ericson, Real-time collision detection. Crc Press, 2004.

[10] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[11] D. Baraff, “An introduction to physically based modeling: rigid body

simulation i—unconstrained rigid body dynamics,” SIGGRAPH course
notes, vol. 82, 1997.

[12] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.

[13] F. Kong, X. Liu, B. Tang, J. Lin, Y. Ren, Y. Cai, F. Zhu, N. Chen, and
F. Zhang, “Marsim: A light-weight point-realistic simulator for lidar-
based uavs,” arXiv preprint arXiv:2211.10716, 2022.

[14] D. S. SolidWorks, “Solidworks®,” Version Solidworks, vol. 1, 2005.
[15] B. O. Community, “Blender—a 3d modelling and rendering package,”

Blender Foundation, 2018.
[16] C. Yuan, W. Xu, X. Liu, X. Hong, and F. Zhang, “Efficient and

probabilistic adaptive voxel mapping for accurate online lidar odometry,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8518–8525,
2022.

4https://www.dji.com

[17] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct
lidar-inertial odometry,” IEEE Transactions on Robotics, 2022.

[18] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
vol. 2018, 2018, p. 59.

[19] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “Mulls: Versatile lidar
slam via multi-metric linear least square,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
11 633–11 640.

[20] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 4758–4765.

[21] J. Lin and F. Zhang, “R3live: A robust, real-time, rgb-colored, lidar-
inertial-visual tightly-coupled state estimation and mapping package,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 10 672–10 678.

[22] ——, “R3live++: A robust, real-time, radiance reconstruction pack-
age with a tightly-coupled lidar-inertial-visual state estimator,” arXiv
preprint arXiv:2209.03666, 2022.

[23] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[24] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transactions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.

[25] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface genera-
tion,” ACM Transactions on Graphics (TOG), vol. 11, no. 3, pp. 201–
227, 1992.

[26] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill, “Octree-based
decimation of marching cubes surfaces,” in Proceedings of Seventh
Annual IEEE Visualization’96. IEEE, 1996, pp. 335–342.

[27] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM siggraph computer graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[28] M. Kazhdan, M. Chuang, S. Rusinkiewicz, and H. Hoppe, “Poisson
surface reconstruction with envelope constraints,” in Computer graphics
forum, vol. 39, no. 5. Wiley Online Library, 2020, pp. 173–182.

[29] P. Labatut, J.-P. Pons, and R. Keriven, “Efficient multi-view reconstruc-
tion of large-scale scenes using interest points, delaunay triangulation
and graph cuts,” in 2007 IEEE 11th international conference on com-
puter vision. IEEE, 2007, pp. 1–8.

[30] V. Litvinov and M. Lhuillier, “Incremental solid modeling from sparse
and omnidirectional structure-from-motion data,” in British Machine
Vision Conference, 2013.

[31] M. Jancosek and T. Pajdla, “Exploiting visibility information in surface
reconstruction to preserve weakly supported surfaces,” International
scholarly research notices, vol. 2014, 2014.

[32] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The
ball-pivoting algorithm for surface reconstruction,” IEEE transactions on
visualization and computer graphics, vol. 5, no. 4, pp. 349–359, 1999.

[33] R. Wang, J. Peethambaran, and D. Chen, “Lidar point clouds to 3-d
urban models : a review,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 11, no. 2, pp. 606–627,
2018.

[34] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE international symposium on mixed and augmented reality.
Ieee, 2011, pp. 127–136.

[35] J. Chen, D. Bautembach, and S. Izadi, “Scalable real-time volumetric
surface reconstruction,” ACM Transactions on Graphics (ToG), vol. 32,
no. 4, pp. 1–16, 2013.

[36] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (ToG), vol. 32, no. 6, pp. 1–11, 2013.

[37] O. Kähler, V. Prisacariu, J. Valentin, and D. Murray, “Hierarchical voxel
block hashing for efficient integration of depth images,” IEEE Robotics
and Automation Letters, vol. 1, no. 1, pp. 192–197, 2015.

[38] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and
S. Leutenegger, “Efficient octree-based volumetric SLAM supporting
signed-distance and occupancy mapping,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 2, pp. 1144–1151, Apr. 2018.

[39] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray,
“Very high frame rate volumetric integration of depth images on mobile
devices,” IEEE transactions on visualization and computer graphics,
vol. 21, no. 11, pp. 1241–1250, 2015.

https://github.com/hku-mars/ImMesh
https://www.dji.com

20

[40] M. Klingensmith, I. Dryanovski, S. S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3d reconstruction onboard a mobile device us-
ing spatially hashed signed distance fields.” in Robotics: science and
systems, vol. 4, no. 1. Citeseer, 2015.

[41] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 1366–1373.

[42] D. Lefloch, M. Kluge, H. Sarbolandi, T. Weyrich, and A. Kolb, “Com-
prehensive use of curvature for robust and accurate online surface
reconstruction,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 12, pp. 2349–2365, 2017.

[43] D. Lefloch, T. Weyrich, and A. Kolb, “Anisotropic point-based fusion,”
in 2015 18th International Conference on Information Fusion (Fusion).
IEEE, 2015, pp. 2121–2128.

[44] T. Weise, T. Wismer, B. Leibe, and L. Van Gool, “In-hand scanning
with online loop closure,” in 2009 IEEE 12th International Conference
on Computer Vision Workshops, ICCV Workshops. IEEE, 2009, pp.
1630–1637.

[45] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3d model
acquisition,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp.
438–446, 2002.

[46] M. Habbecke and L. Kobbelt, “A surface-growing approach to multi-
view stereo reconstruction,” in 2007 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2007, pp. 1–8.

[47] T. Bodenmueller, “Streaming surface reconstruction from real time 3d
measurements,” Ph.D. dissertation, Technische Universität München,
2009.

[48] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “Elasticfusion: Dense slam without a pose graph.” Robotics:
Science and Systems, 2015.

[49] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[50] W. Gao and R. Tedrake, “Surfelwarp: Efficient non-volumetric single
view dynamic reconstruction,” arXiv preprint arXiv:1904.13073, 2019.

[51] T. Schöps, T. Sattler, and M. Pollefeys, “Surfelmeshing: Online surfel-
based mesh reconstruction,” IEEE transactions on pattern analysis and
machine intelligence, vol. 42, no. 10, pp. 2494–2507, 2019.

[52] Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incremental kd tree for
robotic applications,” arXiv preprint arXiv:2102.10808, 2021.

[53] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
2011 IEEE international conference on robotics and automation. IEEE,
2011, pp. 1–4.

[54] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[55] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H.
Gross, “Optimized spatial hashing for collision detection of deformable
objects.” in Vmv, vol. 3, 2003, pp. 47–54.

[56] ISO, ISO/IEC 14882:1998: Programming languages – C++, Sep. 1998.
[57] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,

“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206, 2013.

[58] V. Panek, Z. Kukelova, and T. Sattler, “Meshloc: Mesh-based visual
localization,” in European Conference on Computer Vision. Springer,
2022, pp. 589–609.

[59] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, “Poisson
surface reconstruction for lidar odometry and mapping,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 5624–5630.

[60] M. Dreher, H. Blum, R. Siegwart, and A. Gawel, “Global localization
in meshes,” in ISARC. Proceedings of the International Symposium on
Automation and Robotics in Construction, vol. 38. IAARC Publications,
2021, pp. 747–754.

[61] M. Oelsch, M. Karimi, and E. Steinbach, “R-loam: Improving lidar
odometry and mapping with point-to-mesh features of a known 3d
reference object,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2068–2075, 2021.

[62] J. Lin, C. Zheng, W. Xu, and F. Zhang, “R2live: A robust, real-time,
lidar-inertial-visual tightly-coupled state estimator and mapping,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 7469–7476, 2021.

[63] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[64] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar
odometry and mapping package for lidars of small fov,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 3126–3131.

[65] R. Stevens, Computer Graphics Dictionary, ser. ADVANCES IN
COMPUTER GRAPHICS AND GAME DEVELOPMENT SERIES.
Charles River Media, 2002. [Online]. Available: https://books.google.
com.hk/books?id=XqlJcMi1Pi0C

[66] W. Kahan, “Miscalculating area and angles of a needle-like triangle,”
University of California, Berkeley, vol. 94720, 1776.

[67] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL programming
guide: the official guide to learning OpenGL. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[68] F. Evans, S. Skiena, and A. Varshney, “Optimizing triangle strips for fast
rendering,” in Proceedings of Seventh Annual IEEE Visualization’96.
IEEE, 1996, pp. 319–326.

[69] D. Hearn, M. P. Baker, and M. P. Baker, Computer graphics with
OpenGL. Pearson Prentice Hall Upper Saddle River, NJ:, 2004, vol. 3.

[70] J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. ” O’Reilly
Media, Inc.”, 2012.

[71] K. R. Castleman, Digital image processing. Prentice Hall Press, 1996.
[72] A. Fabri and S. Pion, “Cgal: The computational geometry algorithms

library,” in Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems, 2009, pp.
538–539.

[73] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete and
computational geometry. CRC press, 2017.

[74] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 1689–1696.

[75] S. Fortune, “Voronoi diagrams and delaunay triangulations,” Computing
in Euclidean geometry, pp. 225–265, 1995.

[76] J.-D. Boissonnat and M. Yvinec, Algorithmic geometry. Cambridge
university press, 1998.

[77] D. Attali, J.-D. Boissonnat, and A. Lieutier, “Complexity of the delaunay
triangulation of points on surfaces the smooth case,” in Proceedings of
the nineteenth annual symposium on Computational Geometry, 2003,
pp. 201–210.

[78] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transactions
on Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[79] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transactions
on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[80] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.

[81] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 2012, pp. 3354–3361.

[82] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of michigan north campus long-term vision and lidar dataset,” The
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2016.

[83] T.-M. Nguyen, S. Yuan, M. Cao, Y. Lyu, T. H. Nguyen, and L. Xie,
“Ntu viral: A visual-inertial-ranging-lidar dataset, from an aerial vehicle
viewpoint,” The International Journal of Robotics Research, vol. 41,
no. 3, pp. 270–280, 2022.

[84] D. Cernea, “OpenMVS: Multi-view stereo reconstruction library,” 2020.
[Online]. Available: https://cdcseacave.github.io/openMVS

[85] C. Yuan, J. Lin, Z. Zou, X. Hong, and F. Zhang, “Std: Stable triangle
descriptor for 3d place recognition,” arXiv preprint arXiv:2209.12435,
2022.

[86] J. Lin and F. Zhang, “A fast, complete, point cloud based loop closure for
lidar odometry and mapping,” arXiv preprint arXiv:1909.11811, 2019.

https://books.google.com.hk/books?id=XqlJcMi1Pi0C
https://books.google.com.hk/books?id=XqlJcMi1Pi0C
https://cdcseacave.github.io/openMVS

1

Supplementary Material: An additional trial of our lossless texture reconstruction based on ImMesh

Fig. 1: In this trial, we collected the data by flying over islands in an “B”-like trajectory, as the blue path shown in (a). (b1) and (b2) show the side view and bird view of our reconstructed
triangle mesh, where the mesh is colored by their altitude w.r.t. the sea level. (a) show the overview of our lossless texture reconstruction result, where we use the estimated camera poses (the
yellow frustums) of R3LIVE++ for texturing the mesh with the collected images. The entire texture reconstruction of this 578 s sequence only costs 1210 s (on Intel i9-10900), with 583 s for
ImMesh, 587 s for R3LIVE++, and 40 s for texturing. To see the detailed reconstruction process of the scene, please refer to our video on YouTube: youtu.be/pzT2fMwz428?t=892.

https://youtu.be/pzT2fMwz428?t=892

	Introduction
	Related Works
	Offline mesh reconstruction
	Poisson surface reconstruction (Poisson-based)
	Delaunay triangulation and graph cut (Delaunay-based)

	Online mesh reconstruction
	Voxel volume-based methods (TSDF-based)
	Surfel-based mesh reconstruction

	System overview
	Map structures
	Mesh vertices
	Triangle facets
	Incremental kd-Tree (ikd-Tree)
	Hierarchical voxels
	L1-Voxel O1
	L2-Voxel O2 and voxels of higher layer

	Receiver and localization
	Voxel map construction
	State Estimation
	Point-to-plane residual
	LiDAR pose estimation by maximum a posterior (MAP)

	Point cloud registration
	Update of voxel map
	Append of mesh vertices

	Meshing
	Goals and requirements
	Challenges and approaches
	Voxel-wise vertex retrieval
	Retrieval of in-voxel vertices
	Vertex dilation

	Dimensional reduction by projection
	Projection 3D vertices on a 2D plane
	Two-dimensional Delaunay triangulation

	Voxel-wise meshing with pull, commit and push
	Pull
	Commit
	Push

	Parallelism
	The full meshing algorithm

	Broadcaster
	Broadcast of odometry
	Broadcast of triangle facets
	Rasterization of depth image
	Reinforcement of LiDAR point cloud

	Experiments and results
	Experiment-1: ImMesh for immediate mesh reconstruction
	Experiment setup
	Result and analysis

	Experiment-2: Extensive evaluation of ImMesh on public datasets with various types of LiDAR in different scenes
	Experiment setup
	Result and analysis

	Experiment-3: Quantitative evaluation of meshing accuracy
	Prepare of simulated data
	Experiment setup
	Results and analysis of runtime performance
	Result and analysis of meshing accuracy
	Summary

	Application-1: ImMesh for LiDAR point cloud reinforcement
	Application-2: ImMesh for rapid, lossless texture reconstruction

	Conclusions and future work
	Conclusions
	Future work

	Acknowledgements
	References

