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FAST-LIO2: Fast Direct LiDAR-inertial Odometry
Wei Xu∗1, Yixi Cai∗1, Dongjiao He1, Jiarong Lin1, Fu Zhang1

Abstract—This paper presents FAST-LIO2: a fast, robust,
and versatile LiDAR-inertial odometry framework. Building on
a highly efficient tightly-coupled iterated Kalman filter, FAST-
LIO2 has two key novelties that allow fast, robust, and accurate
LiDAR navigation (and mapping). The first one is directly
registering raw points to the map (and subsequently update
the map, i.e., mapping) without extracting features. This enables
the exploitation of subtle features in the environment and hence
increases the accuracy. The elimination of a hand-engineered
feature extraction module also makes it naturally adaptable to
emerging LiDARs of different scanning patterns; The second
main novelty is maintaining a map by an incremental k-d tree
data structure, ikd-Tree, that enables incremental updates (i.e.,
point insertion, delete) and dynamic re-balancing. Compared
with existing dynamic data structures (octree, R∗-tree, nanoflann
k-d tree), ikd-Tree achieves superior overall performance while
naturally supports downsampling on the tree. We conduct an
exhaustive benchmark comparison in 19 sequences from a
variety of open LiDAR datasets. FAST-LIO2 achieves consistently
higher accuracy at a much lower computation load than other
state-of-the-art LiDAR-inertial navigation systems. Various real-
world experiments on solid-state LiDARs with small FoV are
also conducted. Overall, FAST-LIO2 is computationally-efficient
(e.g., up to 100 Hz odometry and mapping in large outdoor
environments), robust (e.g., reliable pose estimation in cluttered
indoor environments with rotation up to 1000 deg/s), versatile
(i.e., applicable to both multi-line spinning and solid-state Li-
DARs, UAV and handheld platforms, and Intel and ARM-based
processors), while still achieving higher accuracy than existing
methods. Our implementation of the system FAST-LIO2, and the
data structure ikd-Tree are both open-sourced on Github2,3.

I. INTRODUCTION

Building a dense 3-dimension (3D) map of an unknown
environment in real-time and simultaneously localizing in the
map (i.e., SLAM) is crucial for autonomous robots to navigate
in the unknown environment safely. The localization provides
state feedback for the robot onboard controllers, while the
dense 3D map provides necessary information about the envi-
ronment (i.e., free space and obstacles) for trajectory planning.
Vision-based SLAM [1]–[4] is very accurate in localization
but maintains only a sparse feature map and suffers from
illumination variation and severe motion blur. On the other
hand, real-time dense mapping [5]–[8] based on visual sensors
at high resolution and accuracy with only the robot onboard
computation resources is still a grand challenge.

Due to the ability to provide direct, dense, active, and
accurate depth measurements of environments, 3D light de-
tection and ranging (LiDAR) sensor has emerged as another
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essential sensor for robots [9, 10]. Over the last decade,
LiDARs have been playing an increasingly important role
in many autonomous robots, such as self-driving cars [11]
and autonomous UAVs [12, 13]. Recent developments in
LiDAR technologies have enabled the commercialization and
mass production of more lightweight, cost-effective (in a cost
range similar to global shutter cameras), and high performance
(centimeter accuracy at hundreds of meters measuring range)
solid-state LiDARs [14, 15], drawing much recent research in-
terests [16]–[20]. The considerably reduced cost, size, weight,
and power of these LiDARs hold the potential to benefit a
broad scope of existing and emerging robotic applications.

40The central requirement for adopting LiDAR-based
SLAM approaches to these widespread applications is to
obtain accurate, low-latency state estimation and dense 3D
map with limited onboard computation resources. However,
efficient and accurate LiDAR odometry and mapping are still
challenging problems: 1) Current LiDAR sensors produce
a large amount of 3D points from hundreds of thousands
to millions per second. Processing such a large amount of
data in real-time and on limited onboard computing resources
requires a high computation efficiency of the LiDAR odometry
methods; 2) To reduce the computation load, features points,
such as edge points or plane points, are usually extracted based
on local smoothness. However, the performance of the feature
extraction module is easily influenced by the environment.
For example, in structure-less environments without large
planes or long edges, the feature extraction will lead to few
feature points. This situation is considerably worsened if the
LiDAR Field of View (FoV) is small, a typical phenomenon
of emerging solid-state LiDARs [16]. Furthermore, the feature
extraction also varies from LiDAR to LiDAR, depending on
the scanning pattern (e.g., spinning, prism-based [15], MEMS-
based [14]) and point density. So the adoption of a LiDAR
odometry method usually requires much hand-engineering
work; 3) LiDAR points are usually sampled sequentially
while the sensor undergoes continuous motion. This procedure
creates significant motion distortion influencing the perfor-
mance of the odometry and mapping, especially when the
motion is severe. Inertial measurement units (IMUs) could
mitigate this problem but introduces additional states (e.g.,
bias, extrinsic) to estimate; 4) LiDAR usually has a long
measuring range (e.g., hundreds of meters) but with quite low
resolution between scanning lines in a scan. The resultant point
cloud measurements are sparsely distributed in a large 3D
space, necessitating a large and dense map to register these
sparse points. Moreover, the map needs to support efficient
inquiry for correspondence search while being updated in
real-time incorporating new measurements. Maintaining such
a map is a very challenging task and very different from
visual measurements, where an image measurement is of high
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resolution, so requiring only a sparse feature map because a
feature point in the map can always find correspondence as
long as it falls in the FoV.

In this work, we address these issues by two key novel
techniques: incremental k-d tree and direct points registration.
More specifically, our contributions are as follows: 1) We
develop an incremental k-d tree data structure, ikd-Tree, to
represent a large dense point cloud map efficiently. Besides
efficient nearest neighbor search, the new data structure sup-
ports incremental map update (i.e., point insertion, on-tree
downsampling, points delete) and dynamic re-balancing at
minimal computation cost. These features make the ikd-Tree
very suitable for LiDAR odometry and mapping application,
leading to 100 Hz odometry and mapping on computationally-
constrained platforms such as an Intel i7-based micro-UAV
onboard computer and even ARM-based processors. The ikd-
Tree data structure toolbox is open-sourced on Github3. 2)
Allowed by the increased computation efficiency of ikd-Tree,
we directly register raw points to the map, which enables more
accurate and reliable scan registration even with aggressive
motion and in very cluttered environments. We term this raw
points-based registration as direct method in analogy to visual
SLAM [21]. The elimination of a hand-engineered feature
extraction makes the system naturally applicable to different
LiDAR sensors; 3) We integrate these two key techniques into
a full tightly-coupled lidar-inertial odometry system FAST-LIO
[22] we recently developed. The system uses an IMU to com-
pensate each point’s motion via a rigorous back-propagation
step and estimates the system’s full state via an on-manifold
iterated Kalman filter. To further speed up the computation, a
new and mathematically equivalent formula of computing the
Kalman gain is used to reduce the computation complexity
to the dimension of the state (as opposed to measurements).
The new system is termed as FAST-LIO2 and is open-sourced
at Github2 to benefit the community; 4) We conduct various
experiments to evaluate the effectiveness of the developed
ikd-Tree, the direct point registration, and the overall system.
Experiments on 18 sequences of various sizes show that ikd-
Tree achieves superior performance against existing dynamic
data structures (octree, R∗-tree, nanoflann k-d tree) in the
application of LiDAR odometry and mapping. Exhaustive
benchmark comparison on 19 sequences from various open
LiDAR datasets shows that FAST-LIO2 achieves consistently
higher accuracy at a much lower computation load than other
state-of-the-art LiDAR-inertial navigation systems. We finally
show the effectiveness of FAST-LIO2 on challenging real-
world data collected by emerging solid-state LiDARs with very
small FoV, including aggressive motion (e.g., rotation speed
up to 1000 deg/s) and structure-less environments.

The remaining paper is organized as follows: In Section.
II, we discuss relevant research works. We give an overview
of the complete system pipeline and the details of each
key components in Section. III, IV and V, respectively. The
benchmark comparison on open datasets are presented in
Section. VI and the real-world experiments are reported in
Section. VII, followed by conclusions in Section. VIII.

II. RELATED WORKS

A. LiDAR(-Inertial) Odometry

Existing works on 3D LiDAR SLAM typically inherit the
LOAM structure proposed in [23]. It consists of three main
modules: feature extraction, odometry, and mapping. In order
to reduce the computation load, a new LiDAR scan first goes
through feature points (i.e., edge and plane) extraction based
on the local smoothness. Then the odometry module (scan-to-
scan) matches feature points from two consecutive scans to ob-
tain a rough yet real-time (e.g., 10Hz) LiDAR pose odometry.
With the odometry, multiple scans are combined into a sweep
which is then registered and merged to a global map (i.e.,
mapping). In this process, the map points are used to build a k-
d tree which enables a very efficient k-nearest neighbor search
(kNN search). Then, the point cloud registration is achieved
by the Iterative Closest Point (ICP) [24]–[26] method wherein
each iteration, several closest points in the map form a plane
or edge where a target point belongs to. In order to lower the
time for k-d tree building, the map points are downsampled
at a prescribed resolution. The optimized mapping process is
typically performed at a much low rate (1-2Hz).

Subsequent LiDAR odometry works keep a framework
similar to LOAM. For example, Lego-LOAM [27] introduces
a ground point segmentation to decrease the computation
and a loop closure module to reduce the long-term drift.
Furthermore, LOAM-Livox [16] adopts the LOAM to an
emerging solid-state LiDAR. In order to deal with the small
FoV and non-repetitive scanning, where the features points
from two consecutive scans have very few correspondences,
the odometry of LOAM-Livox is obtained by directly regis-
tering a new scan to the global map. Such a direct scan to
map registration increases odometry accuracy at the cost of
increased computation for building a k-d tree of the updated
map points at every step.

Incorporating an IMU can considerably increase the accu-
racy and robustness of LiDAR odometry by providing a good
initial pose required by ICP. Moreover, the high-rate IMU mea-
surements can effectively compensate for the motion distortion
in a LiDAR scan. LION [28] is a loosely-coupled LiDAR
inertial SLAM method that keeps the scan-to-scan registration
of LOAM and introduces an observability awareness check
into the odometry to lower the point number and hence save
the computation. More tightly-coupled LiDAR-inertial fusion
works [17, 29]–[31] perform odometry in a small size local
map consisting of a fixed number of recent LiDAR scans (or
keyframes). Compared to scan-to-scan registration, the scan to
local map registration is usually more accurate by using more
recent information. More specifically, LIOM [29] presents
a tightly-coupled LiDAR inertial fusion method where the
IMU preintegrations are introduced into the odometry. LILI-
OM [17] develops a new feature extraction method for non-
repetitive scanning LiDAR and performs scan registration in a
small map consisting of 20 recent LiDAR scans for the odom-
etry. The odometry of LIO-SAM [30] requires a 9-axis IMU to
produce attitude measurement as the prior of scan registration
within a small local map. LINS [31] introduces a tightly-
coupled iterated Kalman filter and robocentric formula into
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the LiDAR pose optimization in the odometry. Since the local
map in the above works is usually small to obtain real-time
performance, the odometry drifts quickly, necessitating a low-
rate mapping process, such as map refining (LINS [31]), slid-
ing window joint optimization (LILI-OM [17] and LIOM [29])
and factor graph smoothing [32] (LIO-SAM [30]). Compared
to the above methods, FAST-LIO [22] introduces a formal
back-propagation that precisely considers the sampling time
of every single point in a scan and compensates the motion
distortion via a rigorous kinematic model driven by IMU
measurements. Furthermore, a new Kalman gain formula is
used to reduce the computation complexity from the dimension
of the measurements to the dimension of the state. The
new formula is proved to be mathematically equivalent to
the conventional one but reduces the computation by several
orders of magnitude. The considerably increased computation
efficiency allows a direct and real-time scan to map registration
in odometry and update the map (i.e., mapping) at every step.
The timely mapping of all recent scan points leads to increased
odometry accuracy. However, to prevent the growing time of
building a k-d tree of the map, the system can only work in
small environments (e.g., hundreds of meters).

FAST-LIO2 builds on FAST-LIO [22] hence inheriting
the tightly-coupled fusion framework, especially the back-
propagation resolving motion distortion and fast Kalman gain
computation boosting the efficiency. To systematically address
the growing computation issue, we propose a new data struc-
ture ikd-Tree which supports incremental map update at every
step and efficient kNN inquiries. Benefiting from the drasti-
cally decreased computation load, the odometry is performed
by directly registering raw LiDAR points to the map, such
that it improves accuracy and robustness of odometry and
mapping, especially when a new scan contains no prominent
features (e.g., due to small FoV and/or structure-less environ-
ments). Compared to the above tightly-coupled LiDAR-inertial
methods, which all use feature points, our method is more
lightweight and achieves increased mapping rate and odometry
accuracy, and eliminates the need for parameter tuning for
feature extraction.

The idea of directly registering raw points in our work has
been explored in LION [28], which is however a loosely-
coupled method as reviewed above. This idea is also very
similar to the generalized-ICP (G-ICP) proposed in [26], where
a point is registered to a small local plane in the map. This
ultimately assumes that the environment is smooth and hence
can be viewed as a plane locally. However, the computation
load of generalized-ICP is usually large [33]. Other works
based on Normal Distribution Transformation (NDT) [34]–
[36] also register raw points, but NDT has lower stability
compared to ICP and may diverge in some scenes [36].

B. Dynamic Data Structure in Mapping

In order to achieve real-time mapping, a dynamic data
structure is required to support both incremental updates
and kNN search with high efficiency. Generally, the kNN
search problem can be solved by building spatial indices
for data points, which can be divided into two categories:

partitioning the data and splitting the space. A well-known
instance to partition the data is R-tree [37] which clusters the
data into potential overlapped axis-aligned cuboids based on
data proximity in space. Various R-trees splits the nodes by
linear, quadratic, and exponential complexities, all supporting
nearest neighbor search and point-wise updating (insertion,
delete, and re-insertion). Furthermore, R-trees also support
searching target data points in a given search area or satisfying
a given condition. Another version of R-trees is R∗-tree
which outperforms the original ones [38]. The R∗-tree handles
insertion by minimum overlap criteria and applies a forced re-
insertion principle for the node splitting algorithm.

Octree [39] and k-dimensional tree (k-d tree) [40] are two
well-known types of data structures to split the space for kNN
search. The octree organizes 3-D point clouds by splitting
the space equally into eight axis-aligned cubes recursively.
The subdivision of a cube stops when the cube is empty,
or a stopping rule (e.g., minimal resolution or minimal point
number) is met. New points are inserted to leaf nodes on the
octree while a further subdivision is applied if necessary. The
octree supports both kNN search and box-wise search, which
returns data points in a given axis-aligned cuboid.

The k-d tree is a binary tree whose nodes represent an
axis-aligned hyperplane to split the space into two parts. In
the standard construction rule, the splitting node is chosen
as the median point along the longest dimension to achieve
a compact space division [41]. When considering the data
characteristics of low dimensionality and storage on main
memory in mapping, comparative studies show that k-d trees
achieve the best performance in kNN problem [42, 43].
However, inserting new points to and deleting old points from
a k-d tree deteriorates the tree’s balance property; thus, re-
building is required to re-balance the tree. Mapping methods
using k-d tree libraries, such as ANN [44], libnabo [43] and
FLANN [45], fully re-build the k-d trees to update the map,
which results in considerable computation. Though hardware-
based methods to re-build k-d trees have been thoroughly
investigated in 3D graphic applications [46]–[49], the proposed
methods rely heavily on the computational sources which are
usually limited on onboard computers for robotic applications.
Instead of re-building the tree in full scale, Galperin et al.
proposed a scapegoat k-d tree where re-building is applied
partially on the unbalanced sub-trees to maintain a loose
balance property of the entire tree [50]. Another approach
to enable incremental operations is maintaining a set of k-
d trees in a logarithmic method similar to [51, 52] and re-
building a carefully chosen sub-set. The Bkd-tree maintains a
k-d tree T0 with maximal size M in the main memory and
a set of k-d trees Ti on the external memory where the i-th
tree has a size of 2(i−1)M [53]. When the tree T0 is full, the
points are extracted from T0 to Tk−1 and inserted into the first
empty tree Tk. The state-of-the-art implementation nanoflann
k-d tree leverages the logarithmic structure for incremental
updates, whereas lazy labels only mark the deleted points
without removing them from the trees (hence memory) [54].

We propose a dynamic data structure based on the scapegoat
k-d tree [50], named incremental k-d tree (ikd-Tree), to achieve
real-time mapping. Our ikd-Tree supports point-wise insertion
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Fig. 1. System overview of FAST-LIO2.

with on-tree downsampling which is a common requirement
in mapping, whereas downsampling must be done outside
before inserting new points into other dynamic data structures
[38, 39, 54]. When it is required to remove unnecessary
points in a given area with regular shapes (e.g., cuboids),
the existing implementations of R-trees and octrees search
the points within the given space and delete them one by
one while common k-d trees use a radius search to obtain
point indices. Compared to such an indirect and inefficient
method, the ikd-Tree deletes the points in given axis-aligned
cuboids directly by maintaining range information and lazy
labels. Points labeled as “deleted” are removed during the
re-building process. Furthermore, though incremental updates
are available after applying the partial re-balancing methods
as the scapegoat k-d tree [50] and nanoflann k-d tree [54],
the mapping methods using k-d trees suffers from intermittent
delay when re-building on a large number of points. In order
to overcome this, the significant delay in ikd-Tree is avoided
by parallel re-building while the real-time ability and accuracy
in the main thread are guaranteed.

III. SYSTEM OVERVIEW

The pipeline of FAST-LIO2 is shown in Fig. 1. The se-
quentially sampled LiDAR raw points are first accumulated
over a period between 10ms (for 100Hz update) and 100ms
(for 10Hz update). The accumulated point cloud is called a
scan. In order to perform state estimation, points in a new
scan are registered to map points (i.e., odometry) maintained
in a large local map via a tightly-coupled iterated Kalman
filter framework (big dashed block in red, see Section. IV).
Global map points in the large local map are organized by
an incremental k-d tree structure ikd-Tree (big dashed block
in blue, see Section. V). If the FoV range of current LiDAR
crosses the map border, the historical points in the furthest map
area to the LiDAR pose will be deleted from ikd-Tree. As a
result, the ikd-Tree tracks all map points in a large cube area
with a certain length (referred to as “map size” in this paper)
and is used to compute the residual in the state estimation
module. The optimized pose finally registers points in the new
scan to the global frame and merges them into the map by
inserting to the ikd-Tree at the rate of odometry (i.e., mapping).

IV. STATE ESTIMATION

The state estimation of FAST-LIO2 is a tightly-coupled iter-
ated Kalman filter inherited from FAST-LIO [22] but further

incorporates the online calibration of LiDAR-IMU extrinsic
parameters. Here we briefly explain the essential formulations
and workflow of the filter and refer readers to [22] for more
details.

A. Kinematic Model
We first derive the system model, which consists of a state

transition model and a measurement model.
1) State Transition Model:
Take the first IMU frame (denoted as I) as the global frame

(denoted as G) and denote ITL =
(
IRL,

IpL
)

the unknown
extrinsic between LiDAR and IMU, the kinematic model is:

GṘI = GRIbωm − bω − nωc∧, GṗI = GvI ,
Gv̇I = GRI (am − ba − na) + Gg

ḃω = nbω, ḃa = nba,
Gġ = 0, IṘL = 0, I ṗL = 0

(1)

where GpI , GRI denote the IMU position and attitude in the
global frame, Gg is the gravity vector in the global frame,
am and ωm are IMU measurements, na and nω denote the
measurement noise of am and ωm, ba and bω are the IMU
biases modeled as random walk process driven by nba and
nbω , and the notation bac∧ denotes the skew-symmetric cross
product matrix of vector a ∈ R3.

Denote i the index of IMU measurements. Based on the �
operation defined in [22], the continuous kinematic model (1)
can be discretized at the IMU sampling period ∆t [55]:

xi+1 = xi � (∆tf(xi,ui,wi)) (2)

where the function f , state x, input u and noise w are defined
as below:
M , SO(3)× R15 × SO(3)× R3; dim(M) = 24

x ,
[
GRT

I
GpTI

GvTI bTω bTa
GgT IRT

L
IpTL

]T ∈M
u ,

[
ωTm aTm

]T
, w ,

[
nTω nTa nTbω nTba

]T

f (x,u,w)=



ωm − bω − nω

GvI+
1

2

(
GRI (am−ba−na)+Gg

)
∆t

GRI (am−ba−na)+Gg
nbω

nba

03×1

03×1

03×1


∈R24
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2) Measurement Model: LiDAR typically samples points
one after another. The resultant points are therefore sampled
at different poses when the LiDAR undergoes continuous
motion. To correct this in-scan motion, we employ the back-
propagation proposed in [22], which estimates the LiDAR pose
of each point in the scan with respect to the pose at the scan
end time based on IMU measurements. The estimated relative
pose enables us to project all points to the scan end-time based
on the exact sampling time of each individual point in the scan.
As a result, points in the scan can be viewed as all sampled
simultaneously at the scan end-time.

Denote k the index of LiDAR scans and {Lpj , j =
1, · · · ,m} the points in the k-th scan which are sampled at
the local LiDAR coordinate frame L at the scan end-time.
Due to the LiDAR measurement noise, each measured point
Lpj is typically contaminated by a noise Lnj consisting of the
ranging and beam-directing noise. Removing this noise leads
to the true point location in the local LiDAR coordinate frame
Lpgt

j :

Lpgt
j = Lpj + Lnj . (3)

This true point, after projecting to the global frame using
the corresponding LiDAR pose GTIk =

(
GRIk ,

GpIk
)

and
extrinsic ITL, should lie exactly on a local small plane patch
in the map, i.e.,

0 = GuTj
(
GTIk

ITL

(
Lpj + Lnj

)
− Gqj

)
(4)

where Guj is the normal vector of the corresponding plane
and Gqj is a point lying on the plane (see Fig. 2). It should
be noted that the GTIk and ITLk are all contained in the
state vector xk. The measurement contributed by the j-th point
measurement Lpj can therefore be summarized from (4) to a
more compact form as below:

0 = hj
(
xk,

Lpj + Lnj
)
, (5)

which defines an implicit measurement model for the state
vector xk.

B. Iterated Kalman Filter

Based on the state model (2) and measurement model (5)
formulated on manifoldM , SO(3)×R15×SO(3)×R3, we
employ an iterated Kalman filter directly operating on the man-
ifoldM following the procedures in [55] and [22]. It consists
of two key steps: propagation upon each IMU measurement

and iterated update upon each LiDAR scan, both step estimates
the state naturally on the manifold M thus avoiding any re-
normalization. Since the IMU measurements are typically at
a higher frequency than a LiDAR scan (e.g., 200Hz for IMU
measurement and 10Hz ∼ 100Hz for LiDAR scans), multiple
propagation steps are usually performed before an update.

1) Propagation: Assume the optimal state estimate after
fusing the last (i.e., k−1-th) LiDAR scan is x̄k−1 with covari-
ance matrix P̄k−1. The forward propagation is performed upon
the arrival of an IMU measurement. More specifically, the
state and covariance are propagated following (2) by setting
the process noise wi to zero:

x̂i+1 = x̂i � (∆tf(x̂i,ui,0)) ; x̂0 = x̄k−1,

P̂i+1 = Fx̃iP̂iF
T
x̃i

+ FwiQiF
T
wi ; P̂0 = P̄k−1,

(6)

where Qi is the covariance of the noise wi and the matrix Fx̃i

and Fwi are computed as below (see more abstract derivation
in [55] and more concrete derivation in [22]):

Fx̃i = ∂(xi+1�x̂i+1)
∂x̃i

|x̃i=0, wi=0

Fwi = ∂(xi+1�x̂i+1)
∂wi

∣∣∣
x̃i=0, wi=0

(7)

The forward propagation continues until reaching the end
time of a new (i.e., k-th) scan where the propagated state and
covariance are denoted as x̂k, P̂k.

2) Residual Computation: Assume the estimate of state
xk at the current iterate update (see Section. IV-B3) is x̂κk ,
when κ = 0 (i.e., before the first iteration), x̂κk = x̂k,
the predicted state from the propagation in (6). Then, we
project each measured LiDAR point Lpj to the global frame
Gp̂j = GT̂κ

Ik
IT̂κ

Lk
Lpj and search its nearest 5 points in

the map represented by ikd-Tree (see Section. V-A). The
found nearest neighbouring points are then used to fit a local
small plane patch with normal vector Guj and centroid Gqj
that were used in the measurement model (see (4) and (5)).
Moreover, approximating the measurement equation (5) by its
first order approximation made at x̂κk leads to

0 = hj
(
xk,

Lnj
)
' hj (x̂κk ,0) + Hκ

j x̃
κ
k + vj

= zκj + Hκ
j x̃

κ
k + vj

(8)

where x̃κk = xk � x̂κk (or equivalently xk = x̂κk � x̃κk), Hκ
j

is the Jacobin matrix of hj
(
x̂κk � x̃κk ,

Lnj
)

with respect to
x̃κk , evaluated at zero, vj ∈ N (0,Rj) is due to the raw
measurement noise Lnj , and zκj is called the residual:

zκj = hj (x̂κk ,0) = uTj

(
GT̂κ

Ik
IT̂κ

Lk
Lpj− Gqj

)
(9)

3) Iterated Update: The propagated state x̂k and covariance
P̂k from Section. IV-B1 impose a prior Gaussian distribution
for the unknown state xk. More specifically, P̂k represents the
covariance of the following error state:

xk � x̂k = (x̂κk � x̃κk)� x̂k = x̂κk � x̂k + Jκx̃κk

∼ N (0, P̂k)
(10)

where Jκ is the partial differentiation of (x̂κk � x̃κk)� x̂k with
respect to x̃κk evaluated at zero:
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Jκ=


A
(
δGθIk

)−T 03×15 03×3 03×3

015×3 I15×15 03×3 03×3

03×3 03×15 A
(
δIθLk

)−T 03×3

03×3 03×15 03×3 I3×3

 (11)

where A(·)−1 is defined in [22, 55], δGθIk=
GR̂κ

Ik
�GR̂Ik and

δIθLk = IR̂κ
Lk
�IR̂Lk is the error states of IMU’s attitude and

rotational extrinsic, respectively. For the first iteration, x̂κk =
x̂k, then Jκ=I.

Besides the prior distribution, we also have a distribution
of the state due to the measurement (8):

− vj = zκj + Hκ
j x̃

κ
k ∼ N (0,Rj) (12)

Combining the prior distribution in (10) with the measure-
ment model from (12) yields the posteriori distribution of the
state xk equivalently represented by x̃κk and its maximum a-
posteriori estimate (MAP):

min
x̃κk

(
‖xk � x̂k‖2P̂k +

∑m

j=1
‖zκj + Hκ

j x̃
κ
k‖2Rj

)
(13)

where ‖x‖2M = xTM−1x. This MAP problem can be solved
by iterated Kalman filter as below (to simplify the notation,
let H = [HκT

1 , · · · ,HκT

m ]T , R = diag (R1, · · ·Rm),P =

(Jκ)
−1

P̂k(Jκ)−T , and zκk =
[
zκ

T

1 , · · · , zκ
T

m

]T
):

K =
(
HTR−1H + P−1

)−1
HTR−1,

x̂κ+1
k = x̂κk�

(
−Kzκk − (I−KH)(Jκ)−1 (x̂κk � x̂k)

)
.

(14)

Notice that the Kalman gain K computation needs to invert
a matrix of the state dimension instead of the measurement
dimension used in previous works.

The above process repeats until convergence (i.e., ‖x̂κ+1
k �

x̂κk‖<ε). After convergence, the optimal state and covariance
estimates are:

x̄k = x̂κ+1
k , P̄k = (I−KH)P (15)

With the state update x̄k, each LiDAR point (Lpj) in the
k-th scan is then transformed to the global frame via:

Gp̄j = GT̄Ik
IT̄Lk

Lpj ; j = 1, · · · ,m. (16)

The transformed LiDAR points {Gp̄j} are inserted to the map
represented by ikd-Tree (see Section. V). Our state estimation
is summarized in Algorithm 1.

V. MAPPING

In this section, we describe how to incrementally maintain
a map (i.e., insertion and delete) and perform k-nearest search
on it by ikd-Tree. In order to prove the time efficiency of ikd-
Tree theoretically, a complete analysis of time complexity is
provided.

A. Map Management

The map points are organized into an ikd-Tree, which
dynamically grows by merging a new scan of point cloud
at the odometry rate. To prevent the size of the map from
going unbound, only map points in a large local region of
length L around the LiDAR current position are maintained

Algorithm 1: State Estimation

Input : Last output x̄k−1 and P̄k−1;
LiDAR raw points in current scan;
IMU inputs (am, ωm) during current scan.

1 Forward propagation to obtain state prediction x̂k and
its covariance P̂k via (6);

2 Backward propagation to compensate motion [22];
3 κ = −1, x̂κ=0

k = x̂k;
4 repeat
5 κ = κ+ 1;
6 Compute Jκ via (11) and P=(Jκ)−1P̂k(Jκ)−T ;
7 Compute residual zκj and Jacobin Hκ

j via (8) (9);
8 Compute the state update x̂κ+1

k via (14);
9 until ‖x̂κ+1

k � x̂κk‖ < ε;
10 x̄k = x̂κ+1

k ; P̄k = (I−KH)P;
11 Obtain the transformed LiDAR points {Gp̄j} via (16).

Output: Current optimal estimate x̄k and P̄k;
The transformed LiDAR points {Gp̄j}.

r

(a) Initial map (b) Moving the map

r

r

L

Fig. 3. 2D demonstration of map region management. In (a), the blue
rectangle is the initial map region with length L. The red circle is the initial
detection area centered at the initial LiDAR position p0. In (b), the detection
area (dashed red circle) moves to a new position p′(circle with solid red line)
where the map boundaries are touched. The map region is moved to a new
position (green rectangle) by distance d. The points in the subtraction area
(orange area) are removed from the map (i.e., ikd-Tree).

on the ikd-Tree. A 2D demonstration is shown in Fig. 3. The
map region is initialized as a cube with length L, which is
centered at the initial LiDAR position p0. The detection area
of LiDAR is assumed to be a detection ball centered at the
LiDAR current position obtained from (15). The radius of the
detection ball is assumed to be r = γR where R is the LiDAR
FoV range, and γ is a relaxation parameter larger than 1. When
the LiDAR moves to a new position p′ where the detection ball
touches the boundaries of the map, the map region is moved
in a direction that increases the distance between the LiDAR
detection area and the touching boundaries. The distance that
the map region moves is set to a constant d = (γ − 1)R. All
points in the subtraction area between the new map region and
the old one will be deleted from the ikd-Tree by a box-wise
delete operation detailed in V-C.
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B. Tree Structure and Construction

1) Data Structure: The ikd-Tree is a binary search tree.
The attributes of a tree node in ikd-Tree is presented in Data
Structure. Different from many existing implementations of
k-d trees which store a “bucket” of points only on leaf nodes
[43]–[45, 53, 54], our ikd-Tree stores points on both leaf
nodes and internal nodes to better support dynamic point
insertion and tree re-balancing. Such storing mode has also
shown to be more efficient in kNN search when a single
k-d tree is used [41], which is the case of our ikd-Tree.
Since a point corresponds to a single node on the ikd-Tree,
we will use points and nodes interchangeably. The point
information (e.g., point coordinates, intensity) are stored in
point. The attributes leftchild and rightchild are
pointers to its left and right child node, respectively. The
division axis to split the space is recorded in axis. The
number of tree nodes, including both valid and invalid nodes,
of the (sub-)tree rooted at the current node is maintained
in attribute treesize. When points are removed from the
map, the nodes are not deleted from the tree immediately, but
only setting the boolean variable deleted to be true (see
Section. V-C2 for details). If the entire (sub-)tree rooted at
the current node is removed, treedeleted is set to true.
The number of points deleted from the (sub-)tree is summed
up into attribute invalidnum. The attribute range records
the range information of the points on the (sub-)tree, which is
interpreted as a circumscribed axis-aligned cuboid containing
all the points. The circumscribed cuboid is represented by its
two diagonal vertices with minimal and maximal coordinates
on each dimension, respectively.

Data Structure: Tree node structure
1 Struct TreeNode:
2 PointType point;
3 TreeNode * leftchild, * rightchild;
4 int axis;
5 int treesize, invalidnum;
6 bool deleted, treedeleted;
7 CuboidVertices range;
8 end

2) Construction: Building the ikd-Tree is similar to build-
ing a static k-d tree in [40]. The ikd-Tree splits the space at
the median point along the longest dimension recursively until
there is only one point in the subspace. The attributes in Data
Structure are initialized during the construction, including
calculating the tree size and range information of (sub-)trees.

C. Incremental Updates

The incremental updates on ikd-Tree refer to incremental
operations followed by dynamic re-balancing detailed in Sec-
tion. V-D. Two types of incremental operations are supported:
point-wise operations and box-wise operations. The point-wise
operations insert, delete or re-insert a single point to/from
the k-d tree, while the box-wise operations insert, delete or
re-insert all points in a given axis-aligned cuboid. In both

TABLE I
ATTRIBUTES INITIALIZATION OF A NEW TREE NODE TO INSERT

Attribute Value Attribute Value

point p axis1 (father.axis + 1) mod k

leftchild NULL rightchild NULL

treesize 1 invalidnum 0

deleted false treedeleted false

range2 [p,p]

1 The axis is initialized using the division axis of its father node.
2 The cuboid is initialized by setting minimal and maximal vertices as

the point to insert.

cases, the point insertion is further integrated with on-tree
downsampling, which maintains the map at a pre-determined
resolution. In this paper, we only explain the point-wise
insertion and box-wise delete as they are required by the map
management of FAST-LIO2. Readers can refer to our open-
source full implementation of ikd-Tree at Github repository3

and technical documents contained therein for more details.
1) Point Insertion with On-tree Downsampling: In consid-

eration of robotic applications, our ikd-Tree supports simulta-
neous point insertion and map downsampling. The algorithm
is detailed in Algorithm 2. For a given point p in {Gp̄j}
from the state estimation module (see Algorithm 1) and
downsample resolution l, the algorithm partitions the space
evenly into cubes of length l, then the cube CD that contains
the point p is found (Line 2). The algorithm only keeps the
point that is nearest to the center pcenter of CD (Line 3). This
is achieved by firstly searching all points contained in CD

on the k-d tree and stores them in a point array V together
with the new point p (Line 4-5). The nearest point pnearest
is obtained by comparing the distances of each point in V
to the center pcenter (Line 6). Then existing points in CD

are deleted (Line 7), after which the nearest point pnearest
is inserted into the k-d tree (Line 8). The implementation of
box-wise search is similar to the box-wise delete as introduced
in Section. V-C2.

The point insertion (Line 11-24) on the ikd-Tree is imple-
mented recursively. The algorithm searches down from the
root node until an empty node is found to append a new
node (Line 12-14). The attributes of the new leaf node are
initialized as Table I. At each non-empty node, the new point
is compared with the point stored on the tree node along the
division axis for further recursion (Line 15-20). The attributes
(e.g., treesize, range) of those visited nodes are updated
with the latest information (Line 21) as introduced in Section.
V-C3. A balance criterion is checked and maintained for sub-
trees updated with the new point to keep the balance property
of ikd-Tree (Line 22) as detailed in Section. V-D.

2) Box-wise Delete using Lazy Labels: In the delete opera-
tion, we use a lazy delete strategy. That is, the points are not re-
moved from the tree immediately but only labeled as “deleted”
by setting the attribute deleted to true (see Data Structure,
Line 6). If all nodes on the sub-tree rooted at node T have
been deleted, the attribute treedeleted of T is set to true.
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Algorithm 2: Point Insertion with On-tree Downsam-
pling

Input: Downsample Resolution l,
New Point to Insert p,
Switch of Parallelly Re-building SW

1 Algorithm Start
2 CD ← FindCube(l,p)
3 pcenter ← Center(CD);
4 V ← BoxwiseSearch(RootNode,CD);
5 V.push(p);
6 pnearest ← FindNearest (V,pcenter);
7 BoxwiseDelete(RootNode,CD)
8 Insert(RootNode,pnearest,NULL,SW);
9 Algorithm End

10

11 Function Insert(T, p, father,SW)
12 if T is empty then
13 Initialize(T,p,father);
14 else
15 ax ← T.axis;
16 if p[ax] < T.point[ax] then
17 Insert(T.leftchild,p,T,SW);
18 else
19 Insert(T.rightchild,p,T,SW);
20 end
21 AttributeUpdate(T);
22 Rebalance(T,SW);
23 end
24 End Function

Therefore the attributes deleted and treedeleted are
called lazy labels. Points labeled as “deleted” will be removed
from the tree during a re-building process (see Section. V-D).

Box-wise delete is implemented utilizing the range infor-
mation in attribute range and the lazy labels on the tree
nodes. As mentioned in V-B, the attribute range is represented
by a circumscribed cuboid CT . The pseudo-code is shown in
Algorithm 3. Given the cuboid of points CO to be deleted
from a (sub-)tree rooted at T , the algorithm searches down
the tree recursively and compares the circumscribed cuboid
CT with the given cuboid CO. If there is no intersection
between CT and CO, the recursion returns directly without
updating the tree (Line 2). If the circumscribed cuboid CT is
fully contained in the given cuboid CO, the box-wise delete
set attributes deleted and treedeleted to true (Line
5). As all points on the (sub-)tree are deleted, the attribute
invalidnum is equal to the treesize (Line 6). For the
condition that CT intersects but not contained in CO, the
current point p is firstly deleted from the tree if it is contained
in CO (Line 9), after which the algorithm looks into the child
nodes recursively (Line 10-11). The attribute update of the
current node T and the balance maintenance is applied after
the box-wise delete operation (Line 12-13).

3) Attribute Update: After each incremental operation,
attributes of the visited nodes are updated with the latest
information using function AttributeUpdate. The func-

Algorithm 3: Box-wise Delete
Input : Operation Cuboid CO,

k-d Tree Node T ,
Switch of Parallelly Re-building SW

1 Function BoxwiseDelete(T,CO,SW)
2 CT ← T.range;
3 if CT ∩CO = ∅ then return;
4 if CT j CO then
5 T.treedelete, T.delete ← true;
6 T.invalidnum = T.treesize;
7 else
8 p← T.point;
9 if p ⊂ CO then T.treedelete = true;

10 BoxwiseDelete(T.leftchild,CO,SW);
11 BoxwiseDelete(T.rightchild,CO,SW);
12 AttributeUpdate(T);
13 Rebalance(T,SW);
14 end
15 End Function

tion calculates the attributes treesize and invalidnum
by summarizing the corresponding attributes on its two
child nodes and the point information on itself; the attribute
range is determined by merging the range information of
the two child nodes and the point information stored on it;
treedeleted is set true if the treedeleted of both child
nodes are true and the node itself is deleted.

D. Re-balancing

The ikd-Tree actively monitors the balance property after
each incremental operation and dynamically re-balances itself
by re-building only the relevant sub-trees.

1) Balancing Criterion: The balancing criterion is com-
posed of two sub-criterions: α-balanced criterion and α-
deleted criterion. Suppose a sub-tree of the ikd-Tree is rooted
at T . The sub-tree is α-balanced if and only if it satisfies the
following condition:

S(T.leftchild) < αbal

(
S(T )− 1

)
S(T.rightchild) < αbal

(
S(T )− 1

) (17)

where αbal ∈ (0.5, 1) and S(T ) is the treesize attribute
of the node T .

The α-deleted criterion of a sub-tree rooted at T is

I(T ) < αdelS(T ) (18)

where αdel ∈ (0, 1) and I(T ) denotes the number of invalid
nodes on the sub-tree (i.e., the attribute invalidnum of node
T ).

If a sub-tree of the ikd-Tree meets both criteria, the sub-
tree is balanced. The entire tree is balanced if all sub-trees are
balanced. Violation of either criterion will trigger a re-building
process to re-balance that sub-tree: the α-balanced criterion
maintains the tree’s maximum height. It can be easily proved
that the maximum height of an α-balanced tree is log1/αbal

(n)
where n is the tree size; the α-deleted criterion ensures invalid
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Fig. 4. Re-building an unbalanced sub-tree

nodes (i.e., labeled as “deleted”) on the sub-trees are removed
to reduce tree size. Reducing the height and size of the k-d
tree allows highly efficient incremental operations and queries
in the future.

2) Re-build & Parallel Re-build: Assuming re-building is
triggered on a subtree T (see Fig. 4), the sub-tree is firstly
flattened into a point storage array V . The tree nodes labeled as
“deleted” are discarded during the flattening. A new perfectly
balanced k-d tree is then built with all points in V as Section.
V-B. When re-building a large sub-tree on the ikd-Tree, a
considerable delay could occur and undermine the real-time
performance of FAST-LIO2. To preserve high real-time ability,
we design a double-thread re-building method. Instead of
simply re-building in the second thread, our proposed method
avoids information loss and memory conflicts in both threads
by an operation logger, thus retaining full accuracy on k-
nearest neighbor search at all times.

The re-building method is presented in Algorithm 4. When
the balance criterion is violated, the sub-tree is re-built in the
main thread when its tree size is smaller than a predetermined
value Nmax; Otherwise, the sub-tree is re-built in the second
thread. The re-building algorithm on the second thread is
shown in function ParRebuild. Denote the sub-tree to re-
build in the second thread as T and its root node as T . The
second thread will lock all incremental updates (i.e., point
insertion and delete) but not queries on this sub-tree (Line
12). Then the second thread copies all valid points contained in
the sub-tree T into a point array V (i.e., flatten) while leaving
the original sub-tree unchanged for possible queries during
the re-building process (Line 13). After the flattening, the
original sub-tree is unlocked for the main thread to take further
requests of incremental updates (Line 14). These requests
will be simultaneously recorded in a queue named operation
logger. Once the second thread completes building a new
balanced k-d tree T ′ from the point array V (Line 15), the
recorded update requests will be performed again on T ′ by
function IncrementalUpdates (Line 16-18). Note that
the parallel re-building switch is set to false as it is already
in the second thread. After all pending requests are processed,
the point information on the original sub-tree T is completely
the same as that on the new sub-tree T ′ except that the new
sub-tree is more balanced than the original one in the tree
structure. The algorithm locks the node T from incremental
updates and queries and replaces it with the new one T ′

(Line 20-22). Finally, the algorithm frees the memory of the
original sub-tree (Line 23). This design ensures that during
the re-building process in the second thread, the mapping
process in the main thread proceeds still at the odometry rate

Algorithm 4: Rebuild (sub-) tree for re-balancing
Input: Root node T of (sub-) tree T for re-building,

Re-build Switch SW
1 Function Rebalance(T ,SW)
2 if ViolateCriterion(T) then
3 if T.treesize < Nmax or Not SW then
4 Rebuild(T)
5 else
6 ThreadSpawn(ParRebuild,T)
7 end
8 end
9 End Function

10

11 Function ParRebuild(T)
12 LockUpdates(T);
13 V ← Flatten(T);
14 Unlock(T);
15 T ′ ← Build(V);
16 foreach op in OperationLogger do
17 IncrementalUpdates(T ′,op,false)
18 end
19 Ttemp ← T ;
20 LockAll(T);
21 T ← T ′;
22 Unlock(T);
23 Free(Ttemp);
24 End Function

without any interruption, albeit at a lower efficiency due to
the temporarily unbalanced k-d tree structure. We should note
that LockUpdates does not block queries, which can be
conducted parallelly in the main thread. In contrast, LockAll
blocks all access, including queries, but it finishes very quickly
(i.e., only one instruction), allowing timely queries in the
main thread. The function LockUpdates and LockAll are
implemented by mutual exclusion (mutex).

E. K-Nearest Neighbor Search

Though being similar to existing implementations in those
well-known k-d tree libraries [43]–[45], the nearest search
algorithm is thoroughly optimized on the ikd-Tree. The range
information on the tree nodes is well utilized to speed up
our nearest neighbor search using a “bounds-overlap-ball” test
detailed in [41]. A priority queue q is maintained to store the
k-nearest neighbors so far encountered and their distance to
the target point. When recursively searching down the tree
from its root node, the minimal distance dmin from the target
point to the cuboid CT of the tree node is calculated firstly.
If the minimal distance dmin is no smaller than the maximal
distance in q, there is no need to process the node and its
offspring nodes. Furthermore, in FAST-LIO2 (and many other
LiDAR odometry), only when the neighbor points are within
a given threshold around the target point would be viewed as
inliers and hence used in the state estimation, this naturally
provides a maximal search distance for a ranged search of k-
nearest neighbors [43]. In either case, the ranged search prunes
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the algorithm by comparing dmin with the maximal distance,
thus reducing the amount of backtracking to improve the time
performance. It should be noted that our ikd-Tree supports
multi-thread k-nearest neighbor search for parallel computing
architectures.

F. Time Complexity Analysis

The time complexity of ikd-Tree breaks into the time for
incremental operations (insertion and delete), re-building, and
k-nearest neighbor search. Note that all analyses are provided
under the assumption of low dimensions (e.g., three dimen-
sions in FAST-LIO2).

1) Incremental Operations: Since the insertion with on-tree
downsampling relies on box-wise delete and box-wise search,
the box-wise operations are discussed first. Suppose n denotes
the tree size of the ikd-Tree, the time complexity of box-wise
operations on the ikd-Tree is:

Lemma 1. Suppose points on the ikd-Tree are in 3-d space
Sx×Sy×Sz and the operation cuboid is CD = Lx×Ly×Lz .
The time complexity of box-wise delete and search of Algo-
rithm 3 with cuboid CD is

O(H(n)) =



O(log n) if∆min > α(
2

3
)(*)

O(n1−a−b−c) if∆max 6 1− α(
1

3
)(**)

O(nα( 1
3 )−∆min−∆med) if (*) and (**) fail and

∆med < α(
1

3
)− α(

2

3
)

O(nα( 2
3 )−∆min) otherwise.

(19)

where a = logn
Sx
Lx

, b = logn
Sy
Ly

and c = logn
Sz
Lz

with

a, b, c > 0. ∆min, ∆med and ∆max are the minimal, median
and maximal value among a, b and c. α(u) is the flajolet-puech
function with u ∈ [0, 1], where particular value is provided:

α(
1

3
) = 0.7162 and α(

2

3
) = 0.3949.

Proof. The asymptotic time complexity for range search of
an axis-aligned hypercube on a k-d tree is provided in [56].
The box-wise delete can be viewed as a range search except
that lazy labels are attached to the tree nodes, which is O(1).
Therefore, the conclusion of range search can be applied to
the box-wise delete and search on the ikd-Tree which leads to
O(H(n)). �

The time complexity of insertion with on-tree downsam-
pling is given as

Lemma 2. The time complexity of point insertion with on-tree
downsampling in Algorithm 2 on ikd-Tree is O(log n).

Proof. The downsampling method on the ikd-Tree is com-
posed of box-wise search and delete followed by the point
insertion. By applying Lemma 1, the time complexity of
downsample is O(H(n)). Generally, the downsample cube
CD is very small comparing with the entire space. Therefore,
the normalized range ∆x, ∆y, and ∆z are small, and the value
of ∆min satisfies the condition (*) for the time complexity of
O(log n).

The maximum height of the ikd-Tree can be easily proved to
be log1/αbal

(n) from Eq. (17) while that of a static k-d tree is
log2 n. Hence the lemma is directly obtained from [40] where
the time complexity of point insertion on a k-d tree was proved
to be O(log n). Summarizing the time complexity of both
downsample and insertion concludes that the time complexity
of insertion with on-tree downsampling is O(log n). �

2) Re-build: The time complexity for re-building falls into
two types: single-thread re-building and parallel double-thread
re-building. In the former case, the re-building is performed by
the main thread recursively. Each level takes the time of sorting
(i.e., O(n)) and the total time over log n levels is O(n log n)
[40] when the dimension k is low. For parallel re-building,
the time consumed in the main thread is only flattening
(which suspends the main thread from further incremental
updates, Algorithm 4, Line 12-14) and tree update (which
takes constant time O(1), Algorithm 4, Line 20-22) but not
building (which is performed in parallel by the second thread,
Algorithm 4, Line 15-18), leading to time complexity of
O(n) (viewed from the main thread). In summary, the time
complexity of re-building the ikd-Tree is O(n) for double-
thread parallel re-building and O(n log n) for single-thread
re-building.

3) K-Nearest Neighbor Search: As the maximum height of
the ikd-Tree is maintained no larger than log1/αbal

(n), where
n is the tree size, the time complexity to search down from
root to leaf nodes is O(log n). During the process of searching
k-nearest neighbors on the tree, the number of backtracking is
proportional to a constant l̄ which is independent of the tree
size [41]. Therefore, the expected time complexity to obtain
k-nearest neighbors on the ikd-Tree is O(log n).

VI. BENCHMARK RESULTS

In this section, extensive experiments in terms of accuracy,
robustness, and computational efficiency are conducted on
various open datasets. We first evaluate our data structure, i.e.,
ikd-Tree, against other data structures for kNN search on 18
dataset sequences of different sizes. Then in Section. VI-C, we
compare the accuracy and processing time of FAST-LIO2 on
19 sequences. All the sequences are chosen from 5 different
datasets collected by both solid-state LiDAR [15] and spinning
LiDARs. The first dataset is from the work LILI-OM [17] and
is collected by a solid-state 3D LiDAR Livox Horizon4, which
has non-repetitive scan pattern and 81.7 ◦ (Horizontal) × 25.1◦

(Vertical) FoV, at a typical scan rate of 10 Hz, referred to
as lili. The gyroscope and accelerometer measurements are
sampled at 200 Hz by a 6-axis Xsens MTi-670 IMU. The
data is recorded in the university campus and urban streets
with structured scenes. The second dataset is from the work
LIO-SAM [30] in MIT campus and contains several sequences
collected by a VLP-16 LiDAR5 sampled at 10 Hz and a
MicroStrain 3DM-GX5-25 9-axis IMU sampled at 1000 Hz,
referred to as liosam. It contains different kinds of scenes,
including structured buildings and forests on campus. The third

4https://www.livoxtech.com/horizon
5https://velodynelidar.com/products/puck-lite/

https://www.livoxtech.com/horizon
https://velodynelidar.com/products/puck-lite/
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TABLE II
THE DATASETS FOR BENCHMARK

LiDAR IMU
Type Line Type Rate

lili Solid-state — 6-axis 200 Hz
utbm Spinning 32 6-axis 100 Hz
ulhk Spinning 32 9-axis 100 Hz
nclt Spinning 32 9-axis 100 Hz
liosam Spinning 16 9-axis 1000 Hz

1 In order to make LIO-SAM works, the IMU rate in dataset nclt is increased
from 50 to 100 Hz through zero-order interpolation.

dataset “utbm” [57] is collected with a human-driving robocar
in maximum 50 km/h speed which has two 10 Hz Velodyne
HDL-32E LiDAR6 and 100 Hz Xsens MTi-28A53G25 IMU.
In this paper, we only consider the left LiDAR. The fourth
dataset “ulhk” [58] contains the 10 Hz LiDAR data from
Velodyne HDL-32E and 100 Hz IMU data from a 9-axis
Xsens MTi-10 IMU. All the sequences of utbm and ulhk
are collected in structured urban areas by a human-driving
vehicle while ulhk also contains many moving vehicles. The
last one, “nclt” [59] is a large-scale, long-term autonomy UGV
(unmanned ground vehicle) dataset collected in the University
of Michigan’s North Campus. The nclt dataset contains 10
Hz data from a Velodyne HDL-32E LiDAR and 50 Hz data
from Microstrain MS25 IMU. The nclt dataset has a much
longer duration and amount of data than other datasets and
contains several open scenes such as a large open parking lot.
The datasets information including the sensors’ type and data
rate is summarized in Table.II. The details about all the 37
sequences used in this section, including name, duration, and
distance, are listed in Table. VIII of Appendix. A.

A. Implementation

We implemented the proposed FAST-LIO2 system in C++
and Robots Operating System (ROS). The iterated Kalman
filter is implemented based on the IKFOM toolbox presented
in our previous work [55]. In the default configuration, the
local map size L is chosen as 1000 m, and the LiDAR raw
points are directly fed into state estimation after a 1:4 (one
out of four LiDAR points) temporal downsampling. Besides,
the spatial downsample resolution (see Algorithm 2) is set
to l = 0.5m for all the experiments. The parameter of ikd-
Tree is set to αbal = 0.6, αdel = 0.5 and Nmax = 1500.
The computation platform for benchmark comparison is a
lightweight UAV onboard computer: DJI Manifold 2-C7 with
a 1.8 GHz quad-core Intel i7-8550U CPU and 8 GB RAM.
For FAST-LIO2, we also test it on an ARM processor that
is typically used in embedded systems with reduced power
and cost. The ARM platform is Khadas VIM38 which has a
low-power 2.2 GHz quad-core Cortex-A73 CPU and 4 GB
RAM, denoted as the keyword “ARM”. We denote “FAST-
LIO2 (ARM)” as the implementation of FAST-LIO2 on the
ARM-based platform.

6https://velodynelidar.com/products/hdl-32e/
7https://www.dji.com/cn/manifold-2/specs
8https://www.khadas.com/vim3

B. Data structure Evaluation

1) Evaluation Setup: We select three state-of-art imple-
mentations of dynamic data structure to compare with our
ikd-Tree: The boost geometry library implementation of R∗-
tree [60], the Point Cloud Library implementation of octree
[61] and the nanoflann [54] implementation of dynamic k-
d tree. These tree data structure implementations are chosen
because of their high implementation efficiency. Moreover,
they support dynamic operations (i.e., point insertion, delete)
and range (or radius) search that is necessary to be integrated
with FAST-LIO2 for a fair comparison with ikd-Tree. For the
map downsampling, since the other data structures do not
support on-tree downsampling as ikd-Tree, we apply a similar
approach as detailed in V-C by utilizing their ability of range
search (for octree and R∗-tree) or radius search (for nanoflann
k-d tree). More specifically, for octree and R∗-tree, their range
search directly returns points within the target cuboid CD (see
Algorithm 2). For nanoflann k-d tree, the target cuboid CD

is firstly split into small cubes whose edge length equals the
minimal edge length of the cuboid. Then the points inside
the circumcircle of each small cube are obtained by radius
search, after which points outside the cuboid are filtered out
via a linear approach while points inside the target cuboid CD

remain. Finally, similar to Algorithm 2, points in CD other
than the nearest point to the center are removed from the map.
For the box-wise delete operation required by map move (see
Section. V-A), it is achieved by removing points within the
specified cuboid one by one according to the point indices
obtained from the respective range or radius search.

All the four data structure implementations are integrated
with FAST-LIO2 and their time performance are evaluated on
18 sequences of different sizes. We run the FAST-LIO2 with
each data structure for each sequence and record the time for
kNN search, point insertion (with map downsampling), box-
wise delete due to map move, the number of new scan points,
and the number of map points (i.e., tree size) at each step. The
number of nearest neighbors to find is 5.

2) Comparison Results: We first compare the time con-
sumption of point insertion (with map downsampling) and
kNN search at different tree sizes across all the 18 sequences.
For each evaluated tree size S, we collect the processing time
at tree size of [S−5%S, S+5%S] to obtain a sufficient number
of samples. Fig. 5 shows the average time consumption of
insertion and kNN search per single target point. The octree
achieves the best performance in point insertion, albeit the
gap with the other is small (below 1 µs), but its inquiry
time is much higher due to the unbalanced tree structure. For
nanoflann k-d tree, the insertion time is often slightly shorter
than the ikd-Tree and R∗-tree, but huge peaks occasionally
occur due to its logarithmic structure of organizing a series of
k-d trees. Such peaks severely degrade the real-time ability,
especially when maintaining a large map. For k-nearest neigh-
bor search, nanoflann k-d tree consumes slightly higher time
than our ikd-Tree, especially when the tree size becomes large
(105 ∼ 106). The R∗-tree achieves a similar insertion time
with ikd-Tree but with a significantly higher search time for
large tree sizes. Finally, we can see that the time of insertion

https://velodynelidar.com/products/hdl-32e/
https://www.dji.com/cn/manifold-2/specs
https://www.khadas.com/vim3
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TABLE III
THE COMPARISON OF AVERAGE TIME CONSUMPTION PER SCAN ON INCREMENTAL UPDATES, kNN SEARCH AND TOTAL TIME

Incremental Update1[ms] kNN Search2[ms] Total [ms]

ikd-Tree nanoflann Octree R∗-tree ikd-Tree nanoflann Octree R∗-tree ikd-Tree nanoflann Octree R∗-tree

utbm 1 3.23 3.43 2.12 3.94 15.19 15.80 42.88 22.56 18.42 19.22 45.00 26.50
utbm 2 3.40 3.65 2.24 4.18 15.52 16.09 44.70 23.46 18.93 19.75 46.94 27.64
utbm 3 3.77 4.17 2.36 4.52 16.83 18.54 45.72 23.12 20.60 22.70 48.08 27.64
utbm 4 3.52 3.70 2.26 4.32 16.53 17.60 44.80 24.74 20.06 21.30 47.06 29.06
utbm 5 3.34 3.60 2.21 4.21 15.51 16.65 45.42 23.38 18.85 20.25 47.63 27.58
utbm 6 3.61 4.12 2.34 4.60 16.25 17.14 43.06 23.49 19.86 21.27 45.40 28.09
utbm 7 3.82 4.62 2.55 5.26 15.42 16.97 42.06 25.87 19.24 21.59 44.61 31.13
ulhk 1 1.97 1.87 1.12 2.30 18.23 21.73 48.30 23.45 20.20 23.60 49.43 25.75
ulhk 2 3.51 3.43 2.32 4.23 22.26 26.07 64.56 31.75 25.77 29.49 66.88 35.98
ulhk 3 1.60 1.58 1.10 1.93 13.62 14.87 42.65 20.49 15.22 16.45 43.74 22.42
nclt 1 1.14 1.59 0.99 2.07 14.50 18.83 41.58 28.07 15.64 20.41 42.57 30.14
nclt 2 1.35 2.04 1.36 2.66 14.68 18.99 46.56 29.20 16.03 21.03 47.91 31.86
nclt 3 1.00 1.42 1.03 2.20 14.41 19.25 46.19 30.10 15.42 20.67 47.22 32.29
lili 1 1.41 1.42 0.83 1.79 9.20 9.71 26.31 12.65 10.61 11.13 27.15 14.44
lili 2 1.53 1.50 0.84 1.81 8.94 9.27 26.18 13.43 10.47 10.77 27.02 15.24
lili 3 1.10 1.14 0.63 1.38 8.46 8.87 25.45 13.18 9.57 10.00 26.08 14.56
lili 4 0.96 0.99 0.62 1.39 10.69 11.97 32.55 15.71 11.65 12.96 33.17 17.10
lili 5 1.22 1.28 0.80 1.63 10.23 11.34 33.53 12.78 11.45 12.62 34.33 14.41

1 Average time consumption per scan of incremental updates, including point-wise insertion with on-tree downsampling and box-wise delete.
2 Average time consumption per scan of single-thread kNN search.
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Fig. 5. Data structure comparison over different tree size.

with on-tree downsampling and kNN search of ikd-Tree is
indeed proportional to log n, which is consistent with the time
complexity analysis in Section. V-F.

For any map data structure to be used in LiDAR odometry
and mapping, the total time for map inquiry (i.e., kNN
search) and incremental map update (i.e., point insertion with
downsampling and box-delete due to map move) ultimately
affects the real-time ability. This total time is summarized in
Table III. It is seen that octree performs the best in incremental
updates in most datasets, followed closely by the ikd-Tree
and the nanoflann k-d tree. In kNN search, the ikd-Tree has
the best performance while the ikd-Tree and nanoflann k-d
tree outperforms the other two by large margins, which is
consistent with the past comparative study [42, 43]. The ikd-

Tree achieves the best overall performance among all other
data structures.

We should remark that while the nanoflann k-d tree achieves
seemly similar performance with ikd-Tree, the peak insertion
time has more profound causes, and its impact on LiDAR
odometry and mapping is severe. The nanoflann k-d tree
deletes a point by only masking it without actually deleting it
from the tree. Consequently, even with map downsampling and
map move, the deleted points remain on the tree affecting the
subsequent inquiry and insertion performance. The resultant
tree size grows much quicker than ikd-Tree and others, a
phenomenon also observed from Fig. 5. The effect could be
small for short sequences (ulhk and lili) but becomes evident
for long sequences (utbm and nclt). The tree size of nanoflann
k-d tree exceeds 6 × 106 in utbm datasets and 107 in nclt
datasets, whereas the maximal tree size of ikd-Tree reaches
2× 106 and 3.6× 106, respectively. The maximal processing
time of incremental updates on nanoflann all exceeds 3 s in
seven utbm datasets and 7 s in three nclt datasets while our ikd-
Tree keeps the maximal processing time at 214.4 ms in nclt 2
and smaller than 150 ms in the rest 17 sequences. While this
peaked processing time of nanoflann does not heavily affect
the overall real-time ability due to its low occurrence, it causes
a catastrophic delay for subsequent control.

C. Accuracy Evaluation

In this section, we compare the overall system FAST-LIO2
against other state-of-the-art LiDAR-inertial odometry and
mapping systems, including LILI-OM [17], LIO-SAM [30],
and LINS [31]. Since FAST-LIO2 is an odometry without any
loop detection or correction, for the sake of fair comparison,
the loop closure module of LILI-OM and LIO-SAM was
deactivated, while all other functions such as sliding window
optimization are enabled. We also perform ablation study on
FAST-LIO2: to understand the influence of the map size,
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TABLE IV
ABSOLUTE TRANSLATIONAL ERRORS (RMSE, METERS) IN SEQUENCES WITH GOOD QUALITY GROUND TRUTH

utbm 8 utbm 9 utbm 10 ulhk 4 nclt 4 nclt 5 nclt 6 nclt 7 nclt 8 nclt 9 nclt 10 liosam 1

FAST-LIO2 (2000m) 25.3 51.6 16.89 2.57 8.63 6.66 21.01 6.59 30.59 5.72 17.14 4.62
FAST-LIO2 (1000m) 27.29 51.6 16.8 2.57 8.71 6.68 20.96 6.58 30.08 5.56 16.29 4.58
FAST-LIO2 (800m) 25.8 51.86 17.23 2.57 8.72 6.65 21.03 6.99 30.74 5.95 16.73 4.58
FAST-LIO2 (600m) 27.75 52.09 17.3 2.57 8.58 6.69 20.96 6.82 30.24 5.8 16.81 4.58
FAST-LIO2 (Feature) 27.21 53.81 22.59 2.61 8.5 7.82 20.57 6.77 31.17 6.09 16.61 7.85
LILI-OM 59.48 782.11 17.59 2.29 317.77 12.42 260.76 12.17 276.74 7.39 328.87 18.78
LIO-SAM —1 — — 3.52 9461 7.15 ×2 22.26 44.83 7.43 1077.5 4.75
LINS 48.17 54.35 60.48 3.11 65.95 1051 243.87 378.99 106.03 11.13 2995.9 880.92

1 Dataset utbm does not produce the attitude quaternion data which is necessary for LIO-SAM, therefore LIO-SAM does not work on all the sequences
in utbm dataset, denoted as —.

2 × denotes that the system totally failed.

we run the algorithm in various map sizes L of 2000 m,
800 m, 600 m, besides the default 1000 m; to evaluate the
effectiveness of direct method against feature-based methods,
we add a feature extraction module from FAST-LIO [22]
(optimized for solid-state LiDAR) and BALM [20] (optimized
for spinning LiDAR). The results are reported under the
keyword “Feature”. All the experiments are conducted in the
Manifold 2-C platform (Intel).

We perform evaluations on all the five datasets: lili, lisam,
utbm, ulhk, and nclt. Since not all sequences have ground truth
(affected by the weather, GPS quality, etc.), we select a total of
19 sequences from the five datasets. These 19 sequences either
have a good ground truth trajectory (as recommended by the
dataset author) or end at the starting position. Therefore, two
criteria, absolute translational error (RMSE) and end-to-end
error, are computed and evaluated.

1) RMSE Benchmark: The RMSE are computed and re-
ported in Table. IV. It is seen that increasing the map size of
FAST-LIO2 increases the overall accuracy as the new can is
registered to older historical points when the LiDAR revisits
a previous place. When the map size is over 2000 m, the
accuracy increment is not persistent as the odometry drift may
cause possible false point match with too old map points, a
typical phenomenon of any odometry. Moreover, the direct
method outperforms the feature-based variant of FAST-LIO2
in most sequences except for two, nclt 4 and nclt 6, where the
difference is tiny and negligible. This proves the effectiveness
of the direct method.

Compared with other LIO methods, FAST-LIO2 or its
variant achieves the best performances in 18 of all 19 data
sequences and is the most robust LIO method among all the
experiments. The only exception is on ulhk 4 where LILI-
OM shows slightly higher accuracy than FAST-LIO. Notably,
LILI-OM shows very large drift in utbm 9, nclt 4, nclt 6,
nclt 8 and nclt 10. The reason is that its sliding-window back-
end fusion (mapping) fails as the map point number grows
large. Hence its pose estimation relies solely on the front-end
odometry which quickly accumulates the drift. LINS works
similarly badly in nclt 5, nclt 6, nclt 7, nclt 10. LIO-SAM
also shows large drift at nclt 4, nclt 10 due to the failure of
back-end factor graph optimization with the very long time
and long-distance data. The video of an example, nclt 10 se-
quence, is available at https://youtu.be/2OvjGnxszf8. Besides,

on other sequences where LILI-OM, LIO-SAM, and LINS
can work normally, their performance is still outperformed by
FAST-LIO2 with large margins. Finally, it should be noted
that the sequence liosam 1 is directly drawn from the work
LIO-SAM [30] so the algorithm has been well-tuned for the
data. However, FAST-LIO2 still achieves higher accuracy.

2) Drift Benchmark: The end-to-end errors are reported in
Table. V. The overall trend is similar to the RMSE benchmark
results. FAST-LIO2 or its variants achieves the lowest drift in
5 of the total 7 sequences. We show an example, ulhk 6 se-
quence, in the video available at https://youtu.be/2OvjGnxszf8.
It should be noted that the LILI-OM has tuned parameters for
each of their own sequences lili while parameters of FAST-
LIO2 are kept the same among all the sequences. LIO-SAM
shows good performance in its own sequences liosam 2 and
liosam 3 but cannot keep it on other sequences such as ulhk.
The LINS performs worse than LIO-SAM in liosam and ulhk
datasets and failed in liosam 2 (garden sequence from [30])
because the two sequences are recorded with large rotation
speeds while the feature points used by LINS are too few.
Also, in most of the sequences, the feature-based FAST-LIO
performs similarly to the direct method except for the sequence
lili 7, which contains many trees and large open areas that
feature extraction will remove many effective points from trees
and faraway buildings.

D. Processing Time Evaluation

Table.VI shows the processing time of FAST-LIO2 with
different configurations, LILI-OM, LIO-SAM, and LINS in all
the sequences. The FAST-LIO2 is an integrated odometry and
mapping architecture, where at each step the map is updated
following immediately the odometry update. Therefore, the
total time (“Total” in Table.VI) includes all possible proce-
dures occurred in the odometry, including feature extraction if
any (e.g., for the feature-based variant), motion compensation,
kNN search, and state estimation, and mapping. It should
be noted that the mapping includes point insertion, box-wise
delete, and tree re-balancing. On the other hand, LILI-OM,
LIO-SAM, and LINS all have separate odometry (including
feature extraction, and rough pose estimation) and mapping
(such as back-end fusion in LILI-OM [17], incremental
smoothing and mapping in LIO-SAM [30] and Map-refining
in LINS [31]), whose average processing time per LiDAR scan

https://youtu.be/2OvjGnxszf8
https://youtu.be/2OvjGnxszf8
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TABLE V
END TO END ERRORS (METERS)

lil
i

6

lil
i

7

lil
i

8

ul
hk

5

ul
hk

6

lio
sa

m
2

lio
sa

m
3

FAST-LIO2
(2000m) 0.14 1.92 21.35 0.33 0.12 <0.1 9.23

FAST-LIO2
(1000m) <0.1 1.63 17.39 0.39 <0.1 <0.1 9.50

FAST-LIO2
(800m) <0.1 1.88 21.59 0.40 <0.1 <0.1 9.49

FAST-LIO2
(600m) 0.22 1.37 23.74 0.39 <0.1 <0.1 9.23

FAST-LIO2
(Feature) 0.20 3.89 21.99 0.32 <0.1 <0.1 12.11

LILI-OM 0.80 4.13 15.60 1.84 7.89 1.95 13.79
LIO-SAM —1 — — 0.83 2.88 <0.1 8.61
LINS — — — 0.90 6.92 ×2 29.90

1 Since the LIO-SAM and LINS are both developed only for spinning
LiDAR, they do not work on the lili dataset which is recorded by a
solid-state LiDAR Livox Horizon.

2 × denotes that the system totally failed.

are referred to as “Odo.” and “Map.” respectively in Table. VI.
The two processing time is summed up to compare with FAST-
LIO2.

From Table. VI, we can see that the FAST-LIO2 consumes
considerably less time than other LIO methods, being x8
faster than LILI-OM, x10 faster than LIO-SAM, and x6 faster
than LINS. Even if only considering the processing time
for odometry of other methods, FAST-LIO2 is still faster
in most sequences except for four. The overall processing
time of fast-LIO2, including both odometry and mapping,
is almost the same as the odometry part of LIO-SAM, x3
faster than LILI-OM and over x2 faster than LINS. Comparing
the different variants of FAST-LIO2, the processing time
for different map sizes are very similar, meaning that the
mapping and kNN search with our ikd-Tree is insensitive to
map size. Furthermore, the feature-based variant and direct
method FAST-LIO2 have roughly similar processing times.
Although feature extraction takes additional processing time
to extract the feature points, it leads to much fewer points
(hence less time) for the subsequent kNN search and state
estimation. On the other hand, the direct method saves the
feature extraction time for points registration. Allowed by
the superior computation efficiency of FAST-LIO2, we further
implemented it with the default map size (1000 m, see VI-C)
on the Khadas VIM3 (ARM) embedded computer. The run
time results show that FAST-LIO2 can also achieve 10 Hz
real-time performance that has not been demonstrated on an
ARM-based platform by any prior work.

VII. REAL-WORLD EXPERIMENTS

A. Platforms

Besides the benchmark evaluation where the datasets are
mainly collected on the ground, we also test our FAST-LIO2
in a variety of challenging data collected by other platforms
(see Fig. 6), including a 280 mm wheelbase quadrotor for
the application of UAV navigation, a handheld platform for

Fig. 6. Three different platforms: (a) 280 mm wheelbase small scale
quadrotor UAV carrying a forward-looking Livox Avia LiDAR, (b) handheld
platforms, (c) 750 mm wheelbase quadrotor UAV carrying a down-facing
Livox Avia LiDAR. All three platforms carry the same DJI Manifold-
2C onboard computer. The video of real-world experiments is available at
https://youtu.be/2OvjGnxszf8.

the application of mobile mapping, and a GPS-navigated
750 mm wheelbase quadrotor UAV for the application of
aerial mapping. The 280 mm wheelbase quadrotor is used
for indoor aggressive flight test, see section VII-B2, so that
the LiDAR is installed face-forward. The 750 mm wheelbase
quadrotor UAV, developed by Ambit-Geospatial company9, is
used for the aerial scanning, see section VII-C, so that the
LiDAR is facing down to the ground. In all platforms, we
use a solid-state 3D LiDAR Livox Avia10 which has a built-in
IMU (model BMI088), a 70.4◦ (Horizontal) × 77.2◦ (Vertical)
circular FoV, and an unconventional non-repetitive scan pattern
that is different from the Livox Horizon or Velodyne LiDARs
used previously in Section. VI. Since FAST-LIO2 does not
extract features, it is naturally adaptable to this new LiDAR.
In all the following experiments, FAST-LIO2 uses the default
configurations (i.e., direct method with map size 1000 m).
Unless stated otherwise, the scan rate is set at 100 Hz, and
the computation platform is the DJI manifold 2-C used in the
previous section.

B. Private Dataset

1) Detail Evaluation of Processing Time: In order to val-
idate the real-time performance of FAST-LIO2, we use the
handheld platform to collect a sequence at 100 Hz scan rate in
a large-scale outdoor-indoor hybrid scene. The sensor returns
to the starting position after traveling around 650m. It should
be noted that the LILI-OM also supports solid-state LiDAR,
but it fails in this data since its feature extraction module
produces too few features at the 100 Hz scan rate. The map
built by FAST-LIO2 in real-time is shown in Fig. 7, which
shows small drift (i.e., 0.14 m) and good agreement with
satellite maps.

For the computation efficiency, we compare FAST-LIO2
with its predecessor FAST-LIO [22] on the Intel (Manifold
2-C) computer. For FAST-LIO2, we additionally test on the
ARM (Khadas VIM3) onboard computer. The difference be-
tween these two methods is that FAST-LIO is a feature-based
method, and it retrieves map points in the current FoV to
build a new static k-d tree for kNN search at every step.
The detailed time consumption of individual components for
processing a scan is shown in Table. VII. The preprocessing
refers to data reception and formatting, which are identical for

9http://www.ambit-geospatial.com.hk
10https://www.livoxtech.com/de/avia

https://youtu.be/2OvjGnxszf8
http://www.ambit-geospatial.com.hk
https://www.livoxtech.com/de/avia
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TABLE VI
THE AVERAGE PROCESSING TIME PER SCAN BENCHMARK IN MILLISECONDS

FAST-LIO2
(2000)

FAST-LIO2
(1000)

FAST-LIO2
(800)

FAST-LIO2
(600)

FAST-LIO2
(Feature)

FAST-LIO2
(ARM) LILI-OM LIO-SAM LINS

Total Total Total Total Total Total Odo. Map. Odo. Map. Odo. Map.
lili 6 13.15 12.56 13.22 15.92 15.35 45.58 68.95 58.46 — — — —
lili 7 16.93 17.61 20.39 19.72 21.13 65.89 40.01 83.71 — — — —
lili 8 14.73 15.31 17.73 17.15 18.37 57.29 61.80 79.11 — — — —
utbm 8 21.72 22.05 21.39 20.82 21.16 100.00 65.29 84.76 — — 37.44 153.92
utbm 9 28.26 25.44 21.41 21.35 17.46 91.05 68.94 97.90 — — 38.82 154.06
utbm 10 23.90 22.48 23.09 20.74 15.30 94.62 66.10 97.29 — — 33.61 166.12
ulhk 4 20.86 20.14 19.96 20.04 29.35 91.12 52.40 74.80 39.50 95.29 34.72 93.70
ulhk 5 24.10 23.90 23.96 23.75 28.70 68.04 53.56 47.68 25.68 127.63 28.01 99.13
ulhk 6 30.52 31.56 30.15 29.25 31.94 92.38 64.46 70.43 15.16 164.36 41.54 199.96
nclt 4 15.65 15.72 15.79 15.75 19.98 69.09 62.49 98.46 13.38 184.03 46.43 188.40
nclt 5 16.56 16.60 16.61 16.58 13.54 68.95 67.64 83.34 19.09 184.46 47.83 198.88
nclt 6 15.92 15.84 15.83 15.68 14.72 66.64 76.10 133.25 × × 54.48 195.31
nclt 7 16.79 16.87 16.82 16.63 15.16 70.24 67.65 81.69 29.50 211.18 56.94 197.71
nclt 8 14.29 14.25 14.32 14.14 7.94 57.03 53.54 57.54 16.30 163.09 53.53 144.95
nclt 9 13.73 13.65 13.60 13.64 10.30 54.82 42.84 68.86 12.79 118.35 46.12 149.45
nclt 10 21.85 21.79 21.78 21.61 20.62 89.65 82.92 130.96 23.13 324.62 83.12 252.68
liosam 1 16.95 14.77 14.65 16.19 15.93 60.60 48.45 84.28 13.47 135.39 24.13 179.44
liosam 2 11.11 11.47 11.52 11.19 19.68 45.27 42.58 99.01 13.09 154.69 20.71 160.66
liosam 3 19.38 16.64 12.00 13.01 12.37 44.26 38.42 64.02 11.32 124.35 40.47 117.25

Fig. 7. Large-scale scene experiment.

FAST-LIO and FAST-LIO2 and are below 0.1 ms. The feature
extraction of FAST-LIO is 0.9 ms per scan, which is saved
by FAST-LIO2. The feature extraction leads to fewer point
numbers than FAST-LIO2 (447 versus 756), hence less time
spent in state estimation (0.99 ms versus 1.66 ms). As a result,
the overall odometry time of the two methods is nevertheless
very close (1.92 ms for FAST-LIO versus 1.69 ms for FAST-
LIO2). The difference between these two methods becomes
drastic when looking at the mapping module, which includes
map points retrieve and k-d tree building for FAST-LIO, and
point insertion, box-wise delete due to map move and tree
rebalancing for FAST-LIO2. As can be seen, the averaging
mapping time per scan for FAST-LIO exceeds 10 ms hence
cannot be processed in real-time for this large scene. On the

TABLE VII
MEAN TIME CONSUMPTION IN MILISECONDS BY INDIVIDUAL

COMPONENTS WHEN PROCESSING A LIDAR SCAN

FAST-LIO FAST-LIO2

Intel Intel ARM

Preprocessing 0.03 ms 0.03 ms 0.05 ms
Feature extraction 0.90 ms 0 ms 0 ms
State estimation 0.99 ms 1.66 ms 4.75 ms
Mapping 13.81 ms 0.13 ms 0.43 ms
Total 15.83 ms 1.82 ms 5.23 ms
Num. of points used 447 756 756
Num. of threads 4 4 2

0 50 100 150 200 250 300 350

100

101

102

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Intel (FAST-LIO) Intel (FAST-LIO2) Arm (FAST-LIO2)
Intel (FAST-LIO,average) Intel (FAST-LIO2,average) Arm (FAST-LIO2,average)

0 50 100 150 200 250 300 350

Time (s)

0

0.5

1

1.5

2

2.5

M
ap

P
oi

n
t

#105

FAST-LIO
FAST-LIO2

Fig. 8. The processing time for each LiDAR scan of FAST-LIO and FAST-
LIO2.

other hand, the mapping time for FAST-LIO2 is well below
the sampling period. The overall time for FAST-LIO2 when
processing 756 points per scan, including both odometry and
mapping, is only 1.82 ms for the Intel processor and 5.23 ms
for the ARM processor.

The time consumption and the number of map points at each
scan are shown in Fig. 8. As can be seen, the processing time
for FAST-LIO2 running on the ARM processor occasionally
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Fig. 9. The flip experiment. (a) the small scale UAV; (b) the onboard camera
showing first person view (FPV) images during the flip; (c) the third person
view images of the UAV during the flip; (d) the estimated UAV pose with
FAST-LIO2.

Fig. 10. The actual environment and the 3D map built by FAST-LIO2 during
the flip.

exceeds the sampling period 10 ms, but this occurred very few
and the average processing time is well below the sampling
period. The occasional timeout usually does not affect a
subsequent controller since the IMU propagated state estimate
could be used during this short period. On the Intel processor,
the processing time for FAST-LIO2 is always below the
sampling period. On the other hand, the processing time for
FAST-LIO quickly grows above the sampling period due to the
growing number of map points. Notice that the considerably
reduced processing time for FAST-LIO2 is achieved even
at a much higher number of map points. Since FAST-LIO
only retains map points within its current FoV, the number
could drop if the LiDAR faces a new area containing few
previously sampled map points. Even with fewer map points,
the processing time for FAST-LIO is still much higher, as
analyzed above. Moreover, since FAST-LIO builds a new k-d
tree at every step, the building time has a time complexity
O(n log n) [40] where n is the number of map points in the
current FoV. This is why the processing time for FAST-LIO
is almost linearly correlated to the map size. In contrast, the
incremental updates of our ikd-Tree has a time complexity of
O(log n), leading to a much slower increment in processing
time over map size.

2) Aggressive UAV Flight Experiment: In order to show
the application of FAST-LIO2 in mobile robotic platforms, we
deploy a small-scale quadrotor UAV carrying the Livox AVIA
LiDAR sensor and conduct an aggressive flip experiment as
shown in Fig. 9. In this experiment, the UAV first takes off
from the ground and hovers at the height of 1.2 m for a while,
then it performs a quick flip, after which it returns to the hover
flight under the control of an on-manifold model predictive
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Fig. 11. The attitude, position, angular velocity and linear velocity in the
UAV flip experiments.

Fig. 12. The mapping results of FAST-LIO2 in the fast motion handheld
experiment.

controller [62] that takes state feedback from the FAST-LIO2.
The pose estimated by FAST-LIO2 is shown in Fig. 9 (d),
which agrees well with the actual UAV pose. The real-time
mapping of the environment is shown in Fig. 10. In addition,
Fig. 11 shows the position, attitude, angular velocity, and linear
velocity during the experiments. The average and maximum
angular velocity during the flip reaches 912 deg/s and 1198
deg/s, respectively (from 50.8 s to 51.2 s). FAST-LIO2 takes
only 2.01 ms on average per scan, which suffices the real-
time requirement of controllers. By providing high-accuracy
odometry and a high-resolution 3D map of the environment
at 100 Hz, FAST-LIO2 is very suitable for a robots’ real-
time control and obstacle avoidance. For example, our prior
work [63] demonstrated the application of FAST-LIO2 on an
autonomous UAV avoiding dynamic small objects (down to 9
mm) in complex indoor and outdoor environments.

3) Fast Motion Handheld Experiment: Here we test FAST-
LIO2 in a challenging fast motion with large velocity and
angular velocity. The sensor is held on hands while rushing
back and forth on a footbridge (see Fig. 12). Fig. 13 shows the
attitude, position, angular velocity, and linear velocity in the
fast motion handheld experiments. It is seen that the maximum
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Fig. 14. Real-time mapping results with FAST-LIO2 for airborne mapping.
The data is collected in the Hong Kong Wetland Park by a UAV with a down-
facing Livox Avia LiDAR. The flight heights are 30 m (a), 30 m (b) and 50
m (c).

velocity reaches 7 m/s and angular velocity varies around
±100 deg/s. In order to show the performance of FAST-LIO2,
the experiment starts and ends at the same point. The end-to-
end error in this experiment is less than 0.06 m (see Fig. 13)
while the total trajectory length is 81 m.

C. Outdoor Aerial Experiment

One important application of 3D LiDARs is airborne map-
ping. In order to validate FAST-LIO2 for this possible applica-
tion, an aerial experiment is conducted. A larger UAV carrying
our LiDAR sensor is deployed. The UAV is equipped with
GPS, IMU, and other flight avionics and can perform auto-
matic waypoints following based on the onboard GPS/IMU
navigation. Note that the UAV-equipped GPS and IMU are
only used for the UAV navigation, but not for FAST-LIO2,
which uses data only from the LiDAR sensor. The LiDAR
scan rate is set to 10 Hz in this experiment. A few flights are
conducted in several locations in the Hong Kong Wetland Park
at Nan Sang Wai, Hong Kong. The real-time mapping results
are shown in Fig. 14. It is seen that FAST-LIO2 works quite

well in these vegetation environments. Many fine structures
such as tree crowns, lane marks on the road, and road curbs
can be clearly seen. Fig. 14 also shows the flight trajectories
computed by FAST-LIO2. We have visually compared these
trajectories with the trajectories estimated by the UAV onboard
GPS/IMU navigation, and they show good agreement. Due
to technical difficulties, the GPS trajectories are not available
here for quantitative evaluation. Finally, the average processing
time per scan for these three environments is 19.6 ms, 23.9
ms, and 23.7 ms, respectively. It should be noted that the
LILI-OM fails in all these three data sequences because the
extracted features are too few when facing the ground.

VIII. CONCLUSION

This paper proposed FAST-LIO2, a direct and robust LIO
framework significantly faster than the current state-of-the-
art LIO algorithms while achieving highly competitive or
better accuracy in various datasets. The gain in speed is due
to removing the feature extraction module and the highly
efficient mapping. A novel incremental k-d tree (ikd-Tree)
data structure, which supports dynamically point insertion,
delete and parallel rebuilding, is developed and validated. A
large amount of experiments in open datasets shows that the
proposed ikd-Tree can achieve the best overall performance
among the state-of-the-art data structure for kNN search in
LiDAR odometry. As a result of the mapping efficiency, the
accuracy and the robustness in fast motion and sparse scenes
are also increased by utilizing more points in the odometry. A
further benefit of FAST-LIO2 is that it is naturally adaptable
to different LiDARs due to the removal of feature extraction,
which has to be carefully designed for different LiDARs
according to their respective scanning pattern and density.
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APPENDIX

The detail information about all 37 sequences used in
Section. VI are listed in Table. VIII.
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