
Fast 3D Sparse Topological Skeleton Graph Generation
for Mobile Robot Global Planning

Xinyi Chen, Boyu Zhou, Jiarong Lin, Yichen Zhang, Fu Zhang and Shaojie Shen

Abstract— In recent years, mobile robots are becoming am-
bitious and deployed in large-scale scenarios. Serving as a high-
level understanding of environments, a sparse skeleton graph is
beneficial for more efficient global planning. Currently, existing
solutions for skeleton graph generation suffer from several
major limitations, including poor adaptiveness to different map
representations, dependency on robot inspection trajectories
and high computational overhead. In this paper, we propose
an efficient and flexible algorithm generating a trajectory-
independent 3D sparse topological skeleton graph capturing
the spatial structure of the free space. In our method, an
efficient ray sampling and validating mechanism are adopted
to find distinctive free space regions, which contributes to
skeleton graph vertices, with traversability between adjacent
vertices as edges. A cycle formation scheme is also utilized to
maintain skeleton graph compactness. Benchmark comparison
with state-of-the-art works demonstrates that our approach
generates sparse graphs in a substantially shorter time, giving
high-quality global planning paths. Experiments conducted in
real-world maps further validate the capability of our method
in real-world scenarios. Our method will be made open source
to benefit the community.

I. INTRODUCTION

A sparse topological skeleton graph is a compact undi-
rected graph structure capturing the spatial structure of
the environment representing free space regions as vertices
and their traversability as edges. By providing a high-level
understanding and abstraction of the environment, the sparse
topological skeleton graph allows highly efficient global
path planning, which is a fundamental problem for mobile
robots. Instead of finding paths directly on a map, which is
computationally demanding especially in large-scale space,
high-quality paths can be searched rapidly leveraging the
skeleton graph.

Although a few methods have been developed to extract
sparse 3D topological skeleton graphs, there are still some
major limitations. First, many of them need to pre-proceed
the mapping results into the specific map representation
that the methods are tailored for. For example, [1] requires
maintaining a Euclidean Signed Distance Field (ESDF) to
build a Generalized Voronoi Diagram (GVD) and [2] needs
a grids-based map to grow clusters by dilating to neighboring
grids. These requirements make them less flexible to be
applied elsewhere and take extra processing time. Second,

This work was supported by HKUST Postgraduate Studentship and
HDJI Lab. X. Chen, B. Zhou, Y. Zhang and S. Shen are with the
Department of Electronic and Computer Engineering, Hong Kong University
of Science and Technology, Hong Kong, China. {xchencq, bzhouai,
eeshaojie}@connect.ust.hk. J. Lin and F. Zhang are with the
Department of Mechanical Engineering, The University of Hong Kong,
Hong Kong SAR, China. {jiarong.lin, fuzhang}@hku.hk

Fig. 1. A 3D sparse topological skeleton graph (pink) generated by the
proposed method in a multi-floored real-world environment of size 110 ×
60× 13 m3 is demonstrated. A side-view from the left showing the multi-
floor structure is placed at the bottom. Details of the skeleton graph passing
an escalator are further enlarged in the top-right corner. Besides, a global
planning A* path searched on the skeleton graph is marked in purple. For
more details, please check out the video.

methods like [2] typically follow a robot inspection trajectory
to construct the skeleton graph. Generated in such a manner,
the skeleton graph heavily depends on the trajectory, instead
of reflecting the inherent structure of the environment. Lastly,
current methods are known to be computationally expensive,
which can consume unreasonable time for large-scale envi-
ronments.

To address the aforementioned limitations, this work pro-
poses an efficient and flexible approach to extract trajectory-
independent sparse topological skeleton graphs from known
environment maps. Our algorithm supports various types of
map representation, as long as a collision checking interface
is available. An efficient ray sampling and validating mech-
anism is adopted to iteratively extract distinctive free space
regions, which contributes to vertices in the skeleton graph.
The traversability between adjacent vertices corresponds to
the skeleton graph edges. A cycle formation scheme is also
utilized to maintain graph compactness.

We compare our approach with state-of-the-art works and
evaluate the global planning performance of the skeleton
graphs generated by different methods. Results show that
the proposed method generates sparse skeleton graphs in a

ar
X

iv
:2

20
8.

04
24

8v
1

 [
cs

.R
O

]
 8

 A
ug

 2
02

2

substantially shorter time, capturing the spatial structure of
free space precisely and giving high-quality global planning
paths rapidly. Moreover, we conduct experiments on real-
world maps containing significant noises. It demonstrates that
our method is capable of handling noisy, complex and large-
scale real-world environments, such as the multi-floored hall
shown in Fig. 1.

In summary, the contributions of this work are:
1) An efficient and flexible algorithm that generates

sparse trajectory-independent skeleton graph for mo-
bile robots global planning, supporting various types
of map representation as long as a collision checking
interface is available.

2) Benchmark comparison shows that the efficiency and
skeleton graph quality of the proposed method outper-
forms the state-of-the-art works. The methodology is
also validated in complex and large-scale real-world
maps. The source code of the proposed method will
be made available to benefit the community.

II. RELATED WORK

Skeleton graph generation in a given environment for mo-
bile robot global planning is gaining increasing attention by
the community in recent years. Generating skeleton graphs
for 2D environments has been a well-studied topic. For the
2D case, most of the methods start with a Euclidean Signed
Distance Field (ESDF) and build the skeleton making use of
the Voronoi Diagram [3]–[5]. 3D skeleton graph generation
is more difficult and still an open problem. Existing methods
can be summarized as GVD-based and clustering-based
methods.

A. GVD-based Methods

It is natural to extend well-studied 2D methods into the
3D case, building Generalized Voronoi Diagrams (GVDs)
for the skeleton graph generation. [6] developed a 3D-
applicable algorithm to compute Voronoi diagram by com-
bining Voronoi diagrams for 2D parallel slices, which are
computed using graphics hardware. [7] combines [6] and
probabilistic roadmaps [8] enabling path planning directly
on the GVD graph. Moreover, several computer graphics
literature studies on 3D shape skeletonization for object
meshes [9] and point clouds [10]. On this topic, [11] presents
a complete and detailed state-of-the-art report. However,
these methods only consider regular small-scale objects, and
are not directly applicable to large-scale maps containing
substantial noises under mobile robot applications.

A recent GVD-based work [1] inspired by these works
attempts to adapt these methods to complex and noisy
environments for mobile robot navigation. They first generate
a one-voxel-thick skeleton diagram from GVD and further
extract a skeleton graph from the diagram. However, it still
results in graphs containing numerous vertices and edges for
noisy maps, affecting global planning efficiency. Besides, this

TABLE I
IMPORTANT ATTRIBUTES IN A FRONTIER

Name Explanation
Facets Component facets of the frontier

Normal Average outward unit normals of facets
Center A central position on one of its facets

Initial position Position of a new node construction
Parent node Node holding this frontier

TABLE II
IMPORTANT ATTRIBUTES IN A VERTEX

Name Explanation
Position Location of the vertex

Type Black / White
Detected polyhedron The polyhedron that this vertex lies on

Projected position Vertex projection on the unit sphere

method requires an ESDF as input, whose maintenance is
time-consuming, especially for large-scale environments.

B. Clustering-based Methods

The key idea of clustering-based methods is to divide an
environment into meaningful clusters, after which skeletons
are generated by connecting neighboring clusters. One way
is to generate keyframe or landmark clusters based on a
similarity measure in visual SLAM [12]–[15]. But landmark
clusters capture no information of free space, which is not
desirable for safe global path planning. Besides, redundant
clusters representing the same place may be created when
this place is visited from different directions. Another kind of
approaches is attaching local occupancy sub-maps along the
metric SLAM map [16], where each sub-map form a cluster.
These approaches only partially capture the topology of the
space and can not be directly used for global planning.

A group of approaches that has advantages for motion
planning is representing the environment as convex free-
space clusters, as presented by some aerial robot trajectory
planning literature [17]–[21]. Along an initial path, a series
of convex free-space clusters are built in shapes of convex
polyhedra [17]–[19], cubes [20] or spheres [21] and further
used in trajectory optimization. However, these methods only
grow clusters for regions around the initial path, which can
not be directly applied to construct sparse topological graphs
of the entire environment. The most relevant work to ours
is Topomap [2], which grows clusters along the explorer
trajectory in an occupancy map. Convexity and compactness
of each cluster are ensured by exhaustively checking all
voxels in every growing iteration, costing an unreasonable
amount of time for growing large clusters.

A common downside of these works is that they are highly
dependent on robot inspection trajectory, instead of reflecting
the inherent topological structure of the free space. Centers
of the clusters are often initialized along the given trajectory
so the clusters only cover free space reached by it.

In contrast to these methods, we propose a novel approach
that efficiently generates trajectory-independent sparse skele-
ton graph that reflects the topological structure of the envi-
ronment and supports various types of map representation.

Fig. 2. An illustration of the skeleton generation algorithm workflow. It
shows an example algorithm iteration including frontier validation and node
expansion.

III. PROBLEM STATEMENT

Given a bounded and known mapM, we aim to extract a
3D trajectory-independent sparse skeleton graph G reflecting
the topological structure of the environment for mobile robot
navigation. Hence, narrow and inaccessible regions are not
expected to be included in the resulting graph. Serving as
a high level understanding of the environment, the skeleton
graph should be able to benefit the global planning for robots.

IV. METHODOLOGY

A. Data Structures and Terminologies

To better explain the proposed approach, we would like to
first introduce the data structures and some terminologies. A
node represents a polyhedron covering a free space region
and stores the polyhedron’s facets and vertices. In 2D cases
(Fig. 2), facets correspond to edges of the polygon. Nodes
also hold frontiers, which are essentially special collections
of adjacent facets. A frontier stands on the border between
its polyhedron and the free space that is not yet reached by
any nodes, guiding the skeleton growth. Important attributes
stored in a frontier and vertex are listed in Table I and
Table II respectively. Besides, a gate is built between two
neighboring nodes and connections are established between
them indicating traversability. In the resulting graph, both
nodes and gates contribute to the vertices of the skeleton
graph, whose edges are the connections.

B. Algorithm Overview

The algorithm workflow is described in Algorithm 1. At
the beginning, the input map M is set and an initial node is
expanded at an arbitrary position within free space. During
the initial node expansion, a few frontiers are identified and
pushed into the pending frontiers First-In-First-Out(FIFO)
list Fpndg . Then, the algorithm iteratively grows the skeleton
graph in a breadth-first manner by popping out frontier f
from Fpndg and, if possible, expanding a new node.

In each iteration, f is verified by performing raycasting
from its center along its normal direction. Only when the

Algorithm 1 Skeleton Graph Generation
Input: Dense environment map M
Output: Sparse 3D skeleton graph G

1: Fpndg , N , G, C, B ← ∅
2: initialize(M, Fpndg , N , B)
3: while Fpndg not empty do
4: f ← Fpndg .pop()
5: verifyFrontier(f)
6: if f invalid then
7: continue
8: end if
9: n← new node(f.initial position)

10: Vblack,Vwhite ← ∅
11: generateVertices(n, Vblack, Vwhite, B)
12: if Vwhite = ∅ and n.size ≤ ε then
13: continue
14: end if
15: cycleFormation(n,Vblack)
16: P,Fnew ← buildPolyAndFrontier(n,Vblack, Vwhite)
17: B.push(∂P)
18: Fpndg .append(Fnew)
19: rectifyNodeCenter(n, Vblack)
20: g ← new gate(f)
21: C.push(buildConnection(g, n))
22: C.push(buildConnection(g, f.parent node))
23: end while
24: return G← (N ∪ G, C)

ray doesn’t detect occupied space or polyhedron within a
threshold distance from the center of f , it will be marked
valid. If f is valid, the mid-point of the ray segment (brown
arrow in Fig. 2) is recorded in it. Then, a new node n
is constructed taking this mid-point position as its initial
position and a new gate g is created at the center of f . Next,
n is expanded in line 9-19, which is the core of our algorithm
(Section IV-C). During the node expansion, a polyhedron is
grown while new frontiers are identified and pushed into
Fpndg (Section IV-D). Moreover, skeleton graph cycles are
formed if necessary (Section IV-E). Upon expansion success,
connections are built doubly-linked between g and n, as
well as g and f ’s parent node. The new nodes, gates and
connections are collected in N , G and C respectively.

C. Node Expansion

Starting from this section, we present the core of our
algorithm: node expansion (line 9-19 in Algorithm 1). To
expand a node n, we first perform raycasts from n’s initial
position along uniformly sampled directions up to a truncated
distance, as in Fig. 2. For each single ray, if no environment
obstacles or other polyhedra is detected within the truncated
distance, a white vertex vwhite is constructed at the truncated
endpoint of the ray, indicating free space not yet reached
by any node. Otherwise, a black vertex vblack is set at the
first detected position on the ray segment. If a ray detects
a polyhedron, it indicates that there exists a cycle in the
skeleton graph to be closed and the detected polyhedron

Fig. 3. The left image illustrates the polyhedron construction and the right
image is an example of the blind frontiers.

is stored along with vblack. To avoid growing redundant
branches in the skeleton graph, a node holding no white
vertex with a size smaller than a threshold ε is discarded,
where the size of a node is computed as the mean distance
from black vertices to the node center. After passing the
size check, a cycle formation is performed (Section IV-E)
by iterating over all black vertices to close potential cycles
in the skeleton graph. Next, the polyhedron represented by
n is constructed, based on which new frontiers are identified
(Section IV-D) and pushed to Fpndg . The boundary ∂P of
the newly grown polyhedron P is recorded into B, which will
be used for raycasting for later nodes. Finally, the position
of n is rectified as the average position of all vblack.

D. Polyhedron Construction and Frontier Identification

Given black and white vertices list Vblack and Vwhite, we
aim to construct the polyhedron P of the current node n
and identify new frontiers Fnew on the polyhedron boundary
∂P . For all vblack in Vblack, we first compute the projected
positions p̂ of vblack on the unit sphere centered at n as
following:

p̂ = c+
p− c
||p− c||

where p is vblack position and c is the initial position of n.
To generate the polyhedron for n, a convex hull mesh P̂

is computed on the projected positions p̂ of all vblack. Next,
we map the facets of resulting mesh P̂ back to the black
vertices Vblack to construct the polyhedron P , as in Fig. 3.
Notice that the polyhedron constructed in this way is not
necessarily convex and therefore is able to capture the free
space more precisely.

To identify frontiers on ∂P , black vertices neighboring
with adjacent white vertices are grouped as a set stored
in Sgroup. Other black vertices not neighboring with any
white vertex will remain ungrouped. For a set si of grouped
black vertices, the frontier fi created by si consists of all
the polyhedron facets whose vertices all belong to si. Then
the new frontier fi will be split if the angle difference of its
component facets’ normals exceeds a threshold. The split
operation results in a few frontiers whose normals point
towards different directions, guiding the skeleton graph to

Fig. 4. An illustration of a cycle formation, which builds connections
and gate between the newly grown polyhedron (yellow) and a previous
polyhedron. The skeleton graph generation process is indicated in arrows
along with the connection segments.

Algorithm 2 Polyhedron Construction/Frontier Identification
Input: Black vertices Vblack, white vertices Vwhite

Output: Polyhedron P , new frontiers Fnew

1: Sgroup,Fnew ← ∅
2: for vi ∈ Vblack do
3: p̂i ← computeProjectedPosition(vi)
4: end for
5: P̂ ← convexHullMesh({p̂i})
6: P ← mapPolyhedron(P̂)
7: Sgroup ← groupBlackVertices(Vblack, Vwhite)
8: for si ∈ Sgroup do
9: fi ← createFrontier(si)

10: Fnew.append(splitFrontier(fi))
11: end for
12: Fnew.append(blindFrontiers(Vblack))
13: sort(Fnew)
14: return P,Fnew

grow towards distinctive free space regions. Moreover, a
special kind of frontier, called blind frontier, is identified
to avoid missing possible passageway due to blind spot
problems (Fig. 3). A blind frontier is formed by neighboring
facets when their vertices have a large difference in distance
to the node. For each frontier, we calculate its normal as
the average outward unit normals of its facets. Also, the
center of the frontier is computed as the projection of the
average position of its facets centers along the normal to
one of its facet. Finally, all the resulting frontiers Fnew will
be sorted decreasingly by the number of facets they own,
since beyond a larger frontier there is a higher chance of
discovering uncovered free space.

E. Cycle Formation

A cycle is formed to ensure the compactness of the
skeleton graph in the situation that the environment forms
a loop, such as Fig. 4. To search cycles for the current
node ncur, we first find the polyhedron set {Pi, i ∈ I}
whose elements are the detected polyhedron stored in all

(a)

LiDAR
Camera

Build-in IMU

Mini PC

(b)

Origin

Fig. 5. (a) Our handheld device for data collection. (b) The map is
reconstructed by R3LIVE, where the points are colored by their height
and the white path is our traveling trajectory for sampling the data.

TABLE III
QUALITY ASSESSMENT OF THE SKELETON GRAPH

Scene Method Generation Time (s) #V #EAvg Std Max Min

Maze
[1] 69.35 0.278 69.78 68.79 7955 22015
[2] 110.0 1.759 113.2 107.5 123 168

Ours 2.126 0.023 2.180 2.100 464 484

Machine
Hall

[1] 1.029 1.081 0.977 0.417 531 1146
[2] 2.570 0.021 2.613 2.542 13 13

Ours 0.211 0.003 0.219 0.208 69 77

black vertices in Vblack. Then, for each involved polyhedron
Pi and their corresponding node ni with i ∈ I, we iterate
through ni’s frontiers and count the number of black vertices
in Vblack that lies on it. The frontier f∗ with the most black
vertices count takes part in the cycle formation. A new gate
g is established at the center of f∗ and connections are set
between g and ncur as well as g and ni. Then collision
checks are performed on these two connections. If any of
them fails the check, the cycle formation will be revoked.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our method
in comparison with two representative state-of-the-art works.
We also demonstrate our approach in real-world maps which
contain significant noises.

A. Implementation Details

Our implementation of the proposed algorithm uses point
cloud as an input map. Hence, collision checking is per-
formed by the nearest neighbor search provided by the Point
Cloud Library (PCL)1. The convex hull mesh computation
used in Section IV-D is provided by quickhull2. All simula-
tion experiments have been run in an Intel Core i7-4770K
CPU at 3.5GHz, with 32 GB memory.

For real-world experiments, we collect the data with a
handheld device shown in Fig. 5(a), which contains a mini
PC DJI Manifold 2C3, a FLIR global shutter camera, and a
LiVOX AVIA4 LiDAR. And to build the precise, dense, 3D
point cloud of the surrounding environment in real-time, we
leverage a low-drift, LiDAR-Visual-Inertial tightly-coupled
state estimator R3LIVE [22] for reconstructing the maps
(Fig. 5(b)).

1https://www.pointclouds.org/
2https://github.com/akuukka/quickhull.git
3https://www.dji.com/manifold-2
4https://www.livoxtech.com/avia

Fig. 6. Benchmark comparison results in the simulated maze scenario.
From top to down, the works shown are proposed method, [1] and [2].
Pictures in left column are the full views, with details in the black rectangles
are shown in the right column. The bold line segments highlighted are the
global planning path utilizing the skeleton graphs. The gray curve in the
result of [2] is the exploration trajectory used.

B. Benchmark Analysis

In this section, we perform benchmark comparison with
two state-of-the-art methods: a GVD-based method [1] and
a clustering-based method [2]. Note that no open-source
code is available for [2] so we use our implementation.
For [1], we transit point cloud maps into ESDFs, which is
the required input map representation. For [2], we perform
an full coverage exploration utilizing [23] to obtain an
exploration trajectory. Also, an occupancy map with a voxel
size of 0.25m is built feeding as inputs together with the
exploration trajectory. The three methods are tested in two
scenarios, for each of which, all methods are run 10 times
with statistics shown in Table III.

We first test the three methods in a 60 × 60 × 2.5 m3

simulated large maze scenario shown in Fig. 6. The results
indicate that our method generates a sparse graph that reflects
the topological structure of free space more precisely. The
skeleton graph generated by [1] is much denser, which has
more than 17 times vertices and 45 times edges compared
with the graph given by our method. Although the skeleton

https://www.pointclouds.org/
https://github.com/akuukka/quickhull.git
https://www.dji.com/manifold-2
https://www.livoxtech.com/avia

TABLE IV
GLOBAL PLANNING PERFORMANCE

Scene Method A* Planning Time (ms) Path(m)Avg Std Max Min

Maze

Classical N/A N/A N/A N/A N/A
[1] 139.4 21.03 201.2 128.2 138.8
[2] 0.729 0.066 0.818 0.596 122.4

Ours 2.479 1.261 4.766 1.022 117.3

Machine
Hall

Classical 5392 61.32 5460 5266 18.04
[1] 4.789 1.188 8.227 4.089 22.48
[2] 0.055 0.011 0.071 0.035 42.19

Ours 0.434 0.133 0.712 0.265 21.74

Fig. 7. Benchmark comparison results in the machine hall scenario. Our
work is shown on top, with [1] and [2] on bottom left and right respectively.
The bold line segments highlighted are the global planning path utilizing the
skeleton graphs. The gray curve in the bottom-right picture is the exploration
trajectory used in [2]. Note that the resulting skeleton graph from [2] fails
to include some important edges.

graph produced by [2] is sparse, it fails to capture the true
structure of the free space since it grows along the explo-
ration trajectory. For example, in the bottom-right picture of
Fig. 6, the skeleton graph in red dashed rectangle should have
been connected and it rejects to grow into dead ends such
as the one in the blue dashed rectangle. We also evaluate
the three methods in a machine hall scenario, which is a
25 × 30 × 2.5 m3 open-sourse real-world dataset provided
by [1]. As shown in Fig. 7, the experiments reveal that the
three methods behave similarly as analyzed above and our
method outperforms the others in skeleton graph quality. In
both scenarios, our method achieves a much shorter skeleton
graph generation time compared with [1] and [2]. Especially
in large-scale environments such as the maze scenario, our
approach is 30+ times faster than the other two methods.

Moreover, we evaluate of global planning performance
utilizing the resulting skeleton graphs of the three methods
by the A* algorithm. To show the advantages of the skeleton
graph, we also compare it with classical A* algorithm, which
performs a search on grids. The global planning paths are
highlighted in bold line segments in Fig. 6 - 7 and statistics
are shown in Table IV. Notice that the classical A* algorithm

Fig. 8. This is an indoor corridor of size 40× 30× 2 m3. Skeleton graph
is shown in pink and the A* global planning path is highlighted in purple.
Pictures at the top-left and bottom-right corners show the details.

is not able to finish in 10 minutes in the large maze scenario.
Global planning on the skeleton graphs generated by our
method is at least 10 times faster compared with [1] and
gives the shortest path among the three skeleton graphs.
Although global planning on the skeleton graph given by
[2] is fast, it fails to give the optimal path topology in
tasks for both scenarios because of the incompleteness of
the skeleton graph. Compared with classical global planning
on grids, the A* algorithm utilizing skeleton graphs rendered
by our method is able to give competitive high-quality paths
20, 000+ times faster in only a few milliseconds.

C. Real-world Map Experiments

To further validate the feasibility of the proposed method,
we conduct experiments on real-world data collected by
us using the handheld device as mentioned in Sec. V-A.
As in the enlarged picture at the bottom-right of Fig. 8,
someone walked by and provided substantial noises to the
map. The skeleton graph with 162 vertices and 167 edges
is successfully generated in 0.654 seconds, demonstrating
that our method is capable of handling noisy maps. An A*
global planning path with a length 58.69m is searched in
2.087 milliseconds. For the large-scale multi-floored hall
scenario in Fig. 1, the skeleton graph with 438 vertices
and 523 edges is generated in 2.856 seconds and the A*
global planning path with length 178.1m is searched in 3.788
milliseconds. The experiments further validate the capability
of our algorithm in noisy, complex and large-scale maps.

VI. CONCLUSIONS

In this paper, we proposed an efficient and flexible ap-
proach to generate trajectory-independent sparse topologi-
cal skeleton graphs for mobile robot global planning. Our
method adopts an efficient ray sampling and validating mech-
anism to iteratively extract polyhedra in free space. Frontiers
are identified on the boundary of polyhedra, guiding the
skeleton graph to grow towards distinctive free space regions.
Compared with state-of-the-art works, our method generates
sparse skeleton graph in a substantially shorter time, captur-
ing the spatial structure of free space precisely and giving
high-quality global planning paths rapidly. Experiments on
real-world maps demonstrate our method is capable of han-
dling noisy, complex and large-scale environments.

REFERENCES

[1] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Sparse 3d
topological graphs for micro-aerial vehicle planning,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.(IROS). IEEE, 2018,
pp. 1–9.

[2] F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart,
“Topomap: Topological mapping and navigation based on visual slam
maps,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–9.

[3] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[4] N. Kalra, D. Ferguson, and A. Stentz, “Incremental reconstruction of
generalized voronoi diagrams on grids,” Robotics and Autonomous
Systems, vol. 57, no. 2, pp. 123–128, 2009.

[5] M. Liu, F. Colas, L. Oth, and R. Siegwart, “Incremental topological
segmentation for semi-structured environments using discretized gvg,”
Autonomous Robots, vol. 38, no. 2, pp. 143–160, 2015.

[6] K. Hoff, T. Culver, J. Keyser, M. C. Lin, and D. Manocha, “Interactive
motion planning using hardware-accelerated computation of general-
ized voronoi diagrams,” Proc. of the IEEE Intl. Conf. on Robot. and
Autom. (ICRA), vol. 3, pp. 2931–2937, 2000.

[7] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A voronoi-based
hybrid motion planner,” Proc. of the IEEE/RSJ Intl. Conf. on Intell.
Robots and Syst.(IROS), vol. 1, pp. 55–60, 2001.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[9] A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang, “Mean curva-
ture skeletons,” in Computer Graphics Forum, vol. 31, no. 5. Wiley
Online Library, 2012, pp. 1735–1744.

[10] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve skeleton extrac-
tion from incomplete point cloud,” in ACM SIGGRAPH 2009 papers,
2009, pp. 1–9.

[11] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea,
“3d skeletons: A state-of-the-art report,” in Computer Graphics Forum,
vol. 35, no. 2. Wiley Online Library, 2016, pp. 573–597.

[12] Z. Zivkovic, B. Bakker, and B. Krose, “Hierarchical map building
using visual landmarks and geometric constraints,” in 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2005, pp. 2480–2485.

[13] J.-L. Blanco, J. Gonzalez, and J.-A. Fernandez-Madrigal, “Consistent
observation grouping for generating metric-topological maps that
improves robot localization,” in Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006. IEEE,
2006, pp. 818–823.

[14] F. Fraundorfer, C. Engels, and D. Nistér, “Topological mapping, lo-
calization and navigation using image collections,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Ieee,
2007, pp. 3872–3877.

[15] R. Vazquez-Martin, P. Nunez, A. Bandera, and F. Sandoval, “Spectral
clustering for feature-based metric maps partitioning in a hybrid
mapping framework,” in 2009 IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 4175–4181.

[16] K. Konolige, E. Marder-Eppstein, and B. Marthi, “Navigation in hy-
brid metric-topological maps,” in 2011 IEEE International Conference
on Robotics and Automation. IEEE, 2011, pp. 3041–3047.

[17] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic Foun-
dations of Robotics XI. Springer, 2015, vol. 107, pp. 109–124.

[18] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters (RA-L), pp. 1688–1695, 2017.

[19] X. Zhong, Y. Wu, D. Wang, Q. Wang, C. Xu, and F. Gao, “Generating
large convex polytopes directly on point clouds,” arXiv preprint
arXiv:2010.08744, 2020.

[20] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016, pp. 1476–1483.

[21] F. Gao and S. Shen, “Online quadrotor trajectory generation and
autonomous navigation on point clouds,” in 2016 IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE,
2016, pp. 139–146.

[22] J. Lin and F. Zhang, “R3live: A robust, real-time, rgb-colored, lidar-
inertial-visual tightly-coupled state estimation and mapping package,”
arXiv preprint arXiv:2109.12400, 2021.

[23] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.

	I Introduction
	II Related Work
	II-A GVD-based Methods
	II-B Clustering-based Methods

	III Problem Statement
	IV Methodology
	IV-A Data Structures and Terminologies
	IV-B Algorithm Overview
	IV-C Node Expansion
	IV-D Polyhedron Construction and Frontier Identification
	IV-E Cycle Formation

	V Experimental Results
	V-A Implementation Details
	V-B Benchmark Analysis
	V-C Real-world Map Experiments

	VI Conclusions
	References

