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Abstract— For the manufacture of visual system product, it is
necessary to calibrate a massive number of cameras in a limited
time and space with a high consistency quality. Traditional
calibration method with chessboard pattern is not suitable in
the manufacturing industry since its requirement of motions
leads to the problem of consistency, cost of space and time. In
this work, we present a screen-based solution for automated
camera intrinsic calibration on production lines. With screens
clearly and easily displaying pixel points, the whole calibration
pattern is formed with the dense and uniform points captured
by the camera. The calibration accuracy is comparable with the
traditional method with chessboard pattern. Unlike a variety
of existing methods, our method needs little human interaction,
as well as only a limited amount of space, making it easy to
be deployed and operated in the industrial environments. With
some experiments, we show the comparable performance of
the system for perspective cameras and its potential in fisheye
cameras with the developments of screens.

I. INTRODUCTION

Visual systems are used in industrial applications in the

last decade. With the developing of autonomous technolo-

gies, vision-based systems have been widely used in moving

robots such as autonomous driving and unmanned aerial

vehicles. For vision-aid productions, the camera calibration

is one of the most essential techniques. It is necessary to

develop a low-cost flexible calibration approach which works

autonomously, robustly, and need no specially trained staff

for manufacturing industrial.

Traditional camera intrinsic calibration are using some

specially designed 2D patterns [1]–[9], or special objects

[10]–[13]. There are some disadvantages existing: 1) It is

difficult to sample on areas near the edges of the image. The

sample points provided by the calibration object is sparse

and sensitive for the partial occlusion. The object detection

is also influenced by the larger distortion near the edges.

Which cause nonuniformity of samples and the coverage

is not enough. Samples distribute densely in the center and

sparsely near the edges. 2) The image capture and relative

movements of poses are controlled manually during calibra-

tion. The distribution of samples depends on the operator.

Thus, calibration results are not consistent by lacking the

standard of movements and influenced by the ability of

operators; 3) Images are captured during relative motion

sometimes that will cause blur. This effect deteriorates the
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Fig. 1: Screen calibration system prototype.

accuracy of sample point detection. Especially for rolling

shutter cameras, which are widely used in manufacture for

their low cost.

Using a robot arm to repeat the calibration operation is a

reasonable solution which satisfies the demand of production

capacity. Robots carry the camera or calibration pattern, exe-

cute specially designed action sequences, and collect images

at some particular poses. This kind of approaches is to repeat

the regularize trustworthy human operation automatically

[14, 15]. However, it is inflexible and inconvenient because

industrial robots require a long deployment cycle to re-

deploy for different products. A special space and expensive

cost are demanded by industrial robots in factories.

Our proposed method is tailored for industrial automation:

low-cost, limited amount of space, effective and easy to set

up in industrial factories.

The overview of proposed automatic camera-calibration in

production lines is constructed with calibration workstations,

as shown in Fig. 2. A camera to be calibrated is conveyed

into a workstation then fixed automatically and mechanically.

The camera connects to the PC via the debugging port

as Fig. 5 shows. Then capture images as introduced in

Sect. VI-A. Once the sampling process finished, the connec-

tion between the PC and camera break and the data sample

quality evaluations in Sect. V are executed. Intrinsic calibrate

using the samples if the evaluation test passed. If the test

failed, the camera would be regarded as “not good (NG)”

and removed from the production line. One workstation

handles one particular relative rotation of calibration. Since

the calibration needs at least three relative rotation, three or

four workstations are built in the system.

In this work, we proposed a quick method to evaluate

the sample quality for calibration via the coverage rate and

distribution uniformity in Sec. V. We present a camera
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(b) Calibration workflow in the manufacturing industry

Fig. 2: (a) The rotation and translation between the camera and screen are mechanical fixed, and initially estimated

mechanically. The screen shows rendered images with blobs. (b) An illustration of calibration workflow in manufacturing

industry. A sequence of calibration stations with different rotations form the whole calibration production line.

calibration station with screens, which is able to provide

high-quality samples with uniform distribution and coverage

of the whole image in Sec. VI. In Sec. VII, experiments

certificate the calibration accuracy is comparable with the

transitional chessboard method for perspective cameras. We

also show the potential for fisheye cameras. Furthermore,

our method provide a kind of dynamic sampling for some

irregular cameras, such as event cameras [16, 17]. We

identify our mainly contributions as follows:

• An evaluation method of sample quality for calibration

via coverage rate and distribution uniformity.

• A high-quality sample method that guarantees unifor-

mity and coverage.

• A hardware and software calibration system prototype

tailored for manufacturing automation.

II. RELATED WORK

Camera calibration is a key element of 3D computer

vision. The accuracy of intrinsic parameters is required by

all vision-based systems to calculate the extrinsic parameters

and other geometry computer vision properties [1]. One of

the wide-used methods is proposed by [2], which capture

a sequence of images with a 2D planar pattern in different

orientations, then determine the optimal intrinsic parameters

by minimizing the reprojection error between observation

points and the corresponding predictions. In [3], the author

proposed a method to solve the partial occlusion problem of

the calibration object by tracking the random dots markers

on a plane. The control points are first localized and then

used to estimate the camera parameters.

More methods are proposed to improve the calibration in

the last decade. Instead of using a simple 2D chessboard,

they use other kinds of objects. Circular patterns are used

to improve the precision and reduce the preparation of

calibration patterns [4]–[7]. The spherical object is flexible

and easy to use since it is efficient to calibrate multiple

cameras simultaneously [10]–[13]. The point (tiny circle)

gets smallest error induced by the distortion for usual 2D

calibration patterns methods, including centroid, conic, point,

and edge [18]. Furthermore, to reduce the number of images

needed, other properties besides geometry can also be used

for calibration. For example, by using a particular object,

whose observed color changes via the viewed angle, the

researcher can calibrate their cameras by just capture using

a single image [19].

The calibration procedure of well-known visual systems is

still complex for the manufacturing industry. To guarantees

an accurate calibration without any human intervention,

while requiring only a limited amount of space, screens are

used in calibration. Some methods directly show a rendered

virtual 2D pattern by the screen [20] instead of moving a

real chessboard. Show a blurred pattern in the screen and

calibration by the defocus images is also a solution [21, 22].

A configuration with a display panel and a thin opaque sheet

with a grid of holes are used for calibration in [23]. In theses

methods, it is absolutely necessary to carry cameras shoot-

ing images for the calibration pattern from different points

of views. The operations are always time-consuming, and

choosing a set of views with suitable rotation is important.

Moreover, it should be a trade-off carefully: the rotation

angles between the camera and the calibration pattern are

neither large nor small. For small rotation angles, the camera

calibration will fail due to the degenerate configuration. For

large rotation angles, the camera calibration accuracy cannot

be guaranteed because of imprecise corner detection results.

However, the coverage of the sample points is hard to

guarantee since the to detect the pattern and find its corre-

spondence at the edge of the image is not easy. Our proposed

approach does not have these problems with its properties:

dense and uniform sampling, fixed relative pose during one

operation, small space required, low-cost, and modular and

easy to deploy.

III. CALIBRATION IN AUTOMATIC PRODUCTION LINES

Cameras calibration is one of the most important and com-

plicated processes in manufacturing products with mounted

cameras. It requires sophisticated mechanical structures (i.e.,

manipulators, 3-axis rotation platform, etc.) to take cameras

to capture images in various point of views. What’s more,

to meet the massive demand of Units Per Hour (UPH), the

procedure of camera calibration should be fast and easy to be

parallel. Last but not least, compared to other scenarios such

as hand-hold calibration, automatic production lines pose a

higher requirement on both reliability and maintainability on

the process of calibration.
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To address the above problems, we propose the screen-

based camera calibration approach, which can not only

meet the requirements of mass production, but also have

advantages on data sampling, mean the characteristics of

higher reliability and maintainability. Compared the previous

method, we have the following advantages.

• Easy to setup and maintain: without sophisticated me-

chanical structures, the pipeline of (shown in Fig. 2(b))

our method is much simpler than the previous methods,

which calibrated using manipulator [14, 15]. What’s

more, the requirement of around illustration is much

simpler compared to chessboard pattern since the screen

is the light source itself.

• Ready for parallels: as the figure shown in Fig. 2(b),

several cameras are calibrated at the same time, and the

pipeline structure can effective decreases the stall time,

therefore boost the productivity.

• Data-efficient: since we can control the screen’s display

and the trigger of camera capture, therefore our data

sampling procedure in more efficient and reliable. We

will expand more details in the following sections.

IV. CAMERA MODEL

In this section, we introduce the perspective camera model

and the polynomial-based fisheye camera model considered

in the calibration. The projection process of a point Pw in

the world frame w is formulated as:

Pc = Rc
wPw +Tc

w, (1)

u = π(Pc), (2)

where Rc
w and Tc

w is the transform between camera frame

and world frame, Pc = [xc yc zc]T is the point in camera

frame. u = [u v]T is the image in pixel coordinate. π(·) is

the projection function of the camera.

A. Perspective Camera Model

As for perspective cameras, the projection is formulated

in [24] as:

u′ = [u′ v′]T = [xc/zc yc/zc]T , (3)

u =

[
fx 0
0 fy

]
(dru

′ + dt) +

[
cx
cy

]
, (4)

where the r = u′2 + v′2. fx and fy is the focal length in x
and y axes. [cx cy]

T is the principal point. dr is the radial

distortion and dt is the tangential distortion with parameters

k1, k2, p1, and p2:

dr = 1 + k1r + k2r
2, (5)

dt =

[
2p1u

′v′ + p2(r + 2u′2)
p1(r + 2v′2) + 2p2u

′v′

]
. (6)

For perspective cameras, there are eight intrinsic parameters:

κ = [fx fy cx cy k1 k2 p1 p2]
T . (7)

B. Fisheye Camera Model

As for fisheye cameras, the projection is combined with a

polynomial-based radial distance
∑

i ηiθ
i in [25]:

u =
∑
i

ηiθ
i

[
fx α
0 fy

] [
cos(ϕ)
sin(ϕ)

]
+

[
cx
cy

]
. (8)

where fx and fy is the focal length in x and y axes and

α is the affine parameter. θ and ϕ are the inclination and

azimuth corresponding to Pc [25]. Considering using seven

order polynomial to formulate the distortion, there are 11

intrinsic parameters:

κ = [fx α fy cx cy η2 η3 η4 η5 η6 η7]
T . (9)

The tangential distortion of the fisheye cameras is ignored

since the tangential distortion is much smaller than the radial

distortion, as described in [26].

V. SAMPLE QUALITY EVALUATION

In the manufacturing industry, each operation step should

be controllable and traceable. To reduce the positive true

and negative false case, a simple and efficient evaluation of

sample quality is necessary.

The camera intrinsic calibration is to refine the parameters

of a camera model which describes the relationship between

the 3D world points and the 2D pixel coordinates. The

data for camera intrinsic calibration is a series of images

capturing the manufactured calibration pattern. The 2D pixel

coordinates are detected from the images and the 3D world

points are known because of the artificially designed pattern.

The domain of the image sensor is all pixels of the camera.

The essence of camera calibration is a nonlinear opti-

mization problem. As for such kind of problem, the sample

distribution influences the results by weight. The greater

density of samples leads the greater weight. And obviously,

a larger sample coverage of the domain leads to a better

description of the model. The samples for calibration should

cover the image pixel domain as much as possible and as

more uniform as possible. We evaluate the sample quality

using the sample coverage and sample uniformity.

a) Sample Coverage: We use sample coverage to eval-

uate the coverage rate in the pixel domain. The samples

around the center of the camera can be collected easily for

most calibration pattern. And for most of the cameras, the

distortion happens at the edge of the image. To this end, the

region around the edge of the image sample should also be

sampled to ensure the camera intrinsic fits the whole camera.

We find a minimum convex hull to cover all of the samples

[27] , to show if the sample can describe the edge of the

image. The sample coverage rcov is defined as:

rcov =
Scov

Simage
× 100% (10)

where Simage is the area of the image and Scov is the

area of the convex hull of the whole sample points in pixel

coordinates.
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(a) Chessboaard calibration. (b) Screen calibration.

Fig. 3: The sample points distribution. Yellow dots show

the sample points for calibration. The blue polygon shows

the convex hull of the samples. The sample coverage rcov of

chessboard calibration (a) and screen calibration (b) is 92.6%
and 99.4% respectively.

b) Sample Uniformity: We use the standard deviation

σρ of density image ρ to evaluate the uniformity of sample

distribution.

We calculate the sample density image ρ which has

the same size of pixels, to describe the sample density

distribution. The elements of each pixel coordinate is

ρ(u, v) =
Nsw

Ssw
, (11)

where Nsw is the number of sample points in the sliding

window around pixel [u v]T and Ssw is the area of slide

window.

The sample uniformity is defined with the standard devi-

ation σρ of the the sample density:

σρ =

√∑
ρ(u,v)∈ρ (ρ(u, v)− ρ̄)

N
(12)

where N is the area of image and ρ̄ is the mean value of

ρ. A smaller σρ means a more uniform of data distribution,

which is better for camera calibration.

VI. CAMERA CALIBRATION

A. Sample from Screen

In the manufacturing industry, the calibration process

is limited with time and space in the factory. According

to Fig. 3(a), it is challenging to get a uniform samples

distribution from a traditional chessboard pattern method.

By control the screen, thousands of samples with quality

of coverage and uniformity are used for calibration. The

distributed image is shown in Fig. 3(b).

The screen is a controllable planer pattern whose marker

and texture can be rendered. We can show a particular

marker in a particular time timestamp, which evidences the

controllability in both time and space. Using a screen as a

calibration pattern, we light a few pixels of the screen, form

a small marker and detect the light pixel from the image. It is

reasonable to generate a uniform data distribution: the sample

density is controllable. A screen can provide a maximum

2 million pixel-wise point marker with a 1920 × 1080
resolution. As for a 12× 8 chessboard, the number is 96.

(a) Chessboaard calibration. (b) Screen calibration.

Fig. 4: The illustration of sample density. The intensity shows

the sample density of the image: the lighter, the denser. The

σρ of chessboard calibration (a) and screen calibration (b) is

5.3× 10−3 and 8.2× 10−4 respectively.

Different from the laboratory environments, cameras have

similar properties in a particular production line. The hard-

ware debugging ports of the products are reserved for factory

by hardware designers.

As shown in Fig. 1, the screen calibration system includes

a screen, an embedded trigger device, and the camera. They

all connect to a computer. The rotation and the translation

between the camera and the screen are mechanical fixed.

As shown in Fig. 5, the computer renders an image with a

light blob with a known coordinate. Then shows the image

on the screen. Then a trigger signal is sent to the embedded

trigger device. The embedded trigger device triggers the

camera to capture an image with the shutter trigger. Finally,

grabbed images are collected by the computer.

The frequency of the screen is around 60-144 Hz. Dur-

ing the render images reflashing, it is reasonable that the

kth captured image is mixed with the kth image and the

k − 1th image because of the trigger delay, exposure and

screen reflashing. To avoid this, we render the images with

incremental light blobs: there is one more light blob shown

in the kth rendered image than the last image. The sample

of raw images are shown in Fig. 6, the left image is k− 1th

captured image Mk−1 and the right image is the kth captured

image Mk. The difference image Md
k is:

Md
k = Mk −Mk−1. (13)

Pre-process the difference image Md
k by adjust the brightness

and contrast, we get image Mp
k:

Mp
k = αMd

k + β, (14)

where α is the image intensity gain and β is the image

intensity bias. kth light blob in the image uk can be detected

in image Mp
k.

Thousands of images are grabbed at the highest frequency,

it cost around 10s seconds. In the factory, the hardware

reliability test is required for the camera module. The can

be set up in the calibration at the same time.

B. Light Point Detect

In the calibration system, the camera is mounted close to

the screen (< 1m), as shown in Fig. 1. Since the camera is
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Fig. 5: The pipeline of screen calibration.

(a) Captured at time k − 1. (b) Captured at time k.

Fig. 6: Two raw images of screen calibration. The red

rectangle marked the kth light blob.

focused at a farther distance (> 1m), the projection of the

light pixel blob will amount to circular disks on the sensor

instead of a sharp point, known as circles of confusion (COC)

[28], as shown in Fig. 7 shown. The size and shape of the

COC mainly depend on the distances from the light blob to

the sensor and its focal plane.

Consider the shape of COC is influenced via the distortion,

the projected location of a point is estimated by fitting a 2D

Gaussian function to the image blob. Fig 8 shows a sample

of a fitted Gaussian function. Since the screen pixel object

can be assumed to have a small size, as shown in Fig. 7, this

method does not suffer from foreshortening effects known to

pose challenges for location estimation using spatial fiducials

such as circular feature points [29].

The intensity of the COC is described as a Gaussian

distribution:

G[u|σu] =
1

σu

√
2π

e−u2/2σ2
u ,

G[v|σv] =
1

σv

√
2π

e−v2/2σ2
v ,

(15)

where the u and v is u = [u v]T , the sub-pixel image

coordinate of the light point, σu and σv is the standard

Fig. 7: The illustration of lens projection.

(a) (b)

Fig. 8: The image of the projected point.

deviation of the Gaussian function. For each light point, we

estimate the uc by fitting a Gaussian function of the blurred

intensity profile.

C. Calibration

The back-end of the screen calibration is to fit the model

with 3D points and the detected 2D points, similar with the

process with chessboard methods.

The calibration is to minimize the sum of the Mahalanobis

norm of the re-projection error of all the collected points:

min
κ,Ri,Ti

∑
i

∑
j

∥∥uij − π(RiPw
ij +Ti)

∥∥2 , (16)

where κ is the intrinsic in equation (7) and (9). Pw
ij is

jth point in the screen (world) frame in ith calibration

workstation, and uij is the corresponding pixel coordinate.

Ri and Ti are the relative orientation and translation of the

camera respectively, initially estimated mechanically.

Since the calibration pattern should cover all of the sensing

regions, for a camera with wide filed-of-view such as fisheye

cameras, more screens are required, as shown in Fig. 10(a).

VII. EXPERIMENTS

In this section, we show the calibration result of some

cameras. The result is comparable for the perspective cam-

eras with traditional chessboard methods. And we also show

the potential of the fisheye calibration.

A. Implementation Details

The system is combined with a fixed screen, a joint to

connect the camera, and an embedded trigger device, as

shown in Fig. 1. A normal Arduino Uno1 embedded device

is enough for our system to trigger the shutter of the camera.

The PointGrey Chameleon32 cameras equipped with the

different lens are used as the cameras. With the 1280×1024
resolution and hardware synchronization, the camera can be

driven by grabbing images at an up-to-100Hz frequency.

The software system is based on the Robot operation

system(ROS)3. And the core of the optimization is based

on Ceres Solver4.

1https://www.arduino.cc
2https://www.ptgrey.com
3http://wiki.ros.org
4http://ceres-solver.org
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Fig. 9: The reprojection error of the

chessboard.

TABLE I: Intrinsic Parameters of Same Camera (Cam3)

Point Dis.(pixel) 15 20 25 30 35 Chessboard

Sample Num. 6827 3831 2437 1719 1244 14400

fx 2561.58 2560.82 2564.62 2561.73 2559.93 2562.89
fy 2555.30 2554.63 2558.22 2555.46 2553.9 2559.51
cx 642.90 642.84 640.12 644.01 642.10 649.62
cy 475.16 474.35 476.99 474.87 473.87 480.20
k1 -0.38815 -0.38778 -0.45302 -0.38910 -0.38769 -0.40720
k2 -0.71124 -0.71159 -0.08740 -0.70275 -0.71397 -0.55060
p1 0.004030 0.004091 0.003980 0.004122 0.004227 0.000110
p2 0.000827 0.000851 0.001029 0.000833 0.000919 0.000325

Error (pixel) 0.257 0.261 0.382 0.269 0.262 0.236

TABLE II: Intrinsic Parameters of Cameras

Component Cam1 Cam1 Cam2 Cam2
Component Proposed Chessboard Proposed Chessboard

fx 886.24 868.08 1680.94 1682.14
fy 886.47 867.85 1681.25 1683.37
cx 645.43 649.90 630.42 629.99
cy 489.81 490.59 516.93 519.32
k1 -0.1378 -0.1282 -0.1047 -0.1056
k2 0.1043 0.0868 0.0966 0.0967
p1 -0.00031 0.00016 0.000048 0.00015
p2 0.00018 -0.000021 0.00027 0.000091

Error(pixel) 0.1564 0.1392 0.3534 0.4143

TABLE III: Intrinsic Parameters of Fisheye Camera

Component Chessboard Proposed

fx 256.47 259.31
fy 256.16 258.82
α 0.2025 0.4973
cx 645.68 645.93
cy 496.69 497.37
η2 0.070162 -0.006879
η3 -0.235970 0.007569
η4 0.170539 -0.193370
η5 -0.024252 0.251363
η6 -0.017415 -0.120197
η7 0.004437 0.019464

Error(pixel) 0.2361 0.3964

B. Screen Calibration Results

1) Calibrate Perspective Camera: We test the perspective

cameras with limit field-of-view. The calibration sample

distribution of the perspective camera is shown in Fig. 3(b).

We test the calibration on an 85-degree field-of-view

(FOV) wide-angle lens (Cam1), a 50-degree FOV medium

focal length lens (Cam2), and a 35-degree FOV telephoto

lens (Cam3). The results are shown in in Table I and Table II.

Compare with the calibration results by chessboard images.

We use chessboard images as the test set to evaluate the

accuracy of results. We collect some chessboard images,

detect the chessboard points and calculate the reprojection

error of the detected points via our screen calibration in-

trinsic parameters. For the perspective camera, the average

reprojection error is 0.1564 pixel by 171 chessboard images,

as shown in Fig. 9. The accuracy is comparable with the

(a) Screens coverage (b) Sample distribution
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(d) Reprojection error

Fig. 10: (a) More screens are required for fisheye cameras.

(b) The distribution is awful for the huge distortion and the

narrow viewing angle of screens. (c) The comparison of the

radial distance. (d) The comparison of the reprojection error.

traditional chessboard methods.

To test the consistency of calibration, we do multiple tests

with the parameters changing. We calibrate a camera with

different density of the screen pattern, to evaluate a uniform

sample will obtain consistent result. The distance between

neighbor points is changed from 15 pixels to 35 pixels, the

number of the samples decrease from about 6800 to about

1200. The parameter values almost is consistent with the

changing of pattern density, as Table I shown. In the factory,

the parameters of calibration station need little adjust to

suitable for different cameras.

The calibration results of the perspective cameras is

enough for computer vision. And the accuracy is comparable

with transitional chessboard methods.

2) Calibrate Fisheye Camera: We test the performance

of fisheye camera calibration on a 235-degree FOV camera.

For ultra-wide FOV cameras, the viewing angle of screens
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and the huge distortion influences the detection of COC. The

calibration sample distribution is shown in Fig. 10(b), and

the intrinsic parameters are shown in Table III. The average

reprojection error is 0.4165 pixel by 124 chessboard images,

as shown in Fig. 10(d). And Fig. 10(c) compares the radial

distance curve of the results, which indicates the distortion.

We show the potential of fisheye calibration, the performance

would improve with the developing of screens. Using more

screens can not only cover the full FOV of the camera but

also reducing the viewing angle of samples.

VIII. CONCLUSION AND DISCUSSION

In this paper, we discussed the requirements of calibration

in the manufacturing industry. We proposed a quick method

to evaluate the calibration sample quality via the coverage

and uniformity. We show a camera calibration station pro-

totype with screens is able to provide high-quality samples

with uniform distribution and coverage of the whole image.

We presented a screen-based solution for automated camera

intrinsic calibration on production lines. The accuracy is

comparable with the transitional method for perspective

cameras. And we mention the potential for fisheye cameras.

Our proposed calibration needs little manual interaction

operation, a limited amount of operation space and cost,

unlike a variety of existing methods. It is able to handle

a massive number of cameras in a limited time and space

with a high consistency quality and easy to deploy in indus-

trial environments. We believe a flexible camera calibration

system will be widely used in flexible manufacturing in next

decades.
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